

DNx-MF-102
User Manual

 Multifunction I/O Board
for the PowerDNA Cube and RACK Series Chassis

November 2024

PN Man-DNx-MF-102

© Copyright 2024 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.
Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:
http://www.ueidaq.com/cms/terms-and-conditions

Contacting United Electronic Industries

For a list of our distributors and partners in the US and around the world, please contact a member of our
support team:

Support:
Telephone: (508) 921-4600
Fax: (508) 668-2350
Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:
Support: uei.support@ametek.com
Website: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:
WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.
Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

Mailing Address: Shipping Address:
249 Vanderbilt Avenue
Norwood, MA 02062
U.S.A.

24 Morgan Drive
Norwood, MA 02062
U.S.A.

http://www.ueidaq.com

DNx-MF-102 Multifunction I/O Board i
Table of Contents

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of this Manual . 1

1.2 Manual Conventions . 2

1.3 Naming Conventions . 2

1.4 Related Resources . 2

1.5 Before You Begin . 3

1.6 DNx-MF-102 Features . 4
1.6.1 Analog Input . 4
1.6.2 Analog Output. 4
1.6.3 Digital I/O . 4
1.6.4 Communication Ports . 5
1.6.5 Guardian Diagnostics . 5
1.6.6 Isolation & Over-voltage Protection . 6
1.6.7 Environmental Conditions. 6
1.6.8 Accessories . 6
1.6.9 Software Support . 6

1.7 Technical Specifications . 7
1.7.1 Analog Input . 7
1.7.2 Analog Output. 8
1.7.3 Industrial Digital I/O . 9
1.7.4 TTL Digital I/O. 9
1.7.5 Counter/Timer. 10
1.7.6 Serial Port . 10
1.7.7 CAN Ports. 10
1.7.8 General . 11

Chapter 2 I/O Functional Descriptions . 12

2.1 Analog Input . 12
2.1.1 Analog Input Diagnostics . 13

2.2 Analog Output . 13
2.2.1 Analog Output Diagnostics . 14

2.3 Digital I/O. 15
2.3.1 Industrial Digital I/O . 15
2.3.2 TTL Digital I/O. 18
2.3.3 Counters . 18

2.4 Serial Port . 21
2.4.1 What is a Serial Port? . 21
2.4.2 Serial Transactions . 22
2.4.3 Minor and Major Frames. 23
2.4.4 Flow Control . 23
2.4.5 Loopback Diagnostics. 23

2.5 CAN Ports . 24
2.5.1 What is CAN? . 24
2.5.2 CAN Port Architecture . 24
2.5.3 CAN Port Capabilities . 26

DNx-MF-102 Multifunction I/O Board ii
Table of Contents

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.5.4 Filtering CAN Frames . 27

2.6 Indicators and Connectors. 29

2.7 Pinout . 30

2.8 Wiring Guidelines . 33
2.8.1 Analog Input Wiring . 33
2.8.2 Industrial Digital Output Wiring . 34
2.8.3 Serial Port Wiring . 35
2.8.4 CAN Bus Wiring . 37

Chapter 3 PowerDNA Explorer . 38

3.1 Introduction . 38

3.2 Analog Input . 40
3.2.1 Configure AI Subsystem. 40
3.2.2 Read AI Data . 40

3.3 Analog Output . 42
3.3.1 Write AO Data. 42
3.3.2 Read AO Guardian Diagnostics . 43

3.4 Industrial Digital Input . 44

3.5 Industrial Digital Output . 46
3.5.1 Configure PWM . 46
3.5.2 Write to Digital Output. 48

3.6 RS-232/422/485 Port . 49
3.6.1 Configure Serial Port . 49
3.6.2 Send/Receive Data. 50

3.7 CAN Port . 52
3.7.1 Configure CAN Port . 52
3.7.2 Send/Receive Data. 53

3.8 Counter/Timer . 55
3.8.1 Configure Count Mode and Sources . 55
3.8.2 Quadrature Mode . 56
3.8.3 Bin Counter Mode. 57
3.8.4 PWM Output Mode . 57
3.8.5 Frequency Mode. 58

3.9 Logic-Level DIO. 60
3.9.1 Read TTL Inputs . 60
3.9.2 Write TTL Data . 61

Chapter 4 Programming with High-level API . 62

4.1 About the High-level API . 62

4.2 Example Code . 63

4.3 Create a Session . 63

4.4 Assemble the Resource String . 63

4.5 Configure the Timing . 65

4.6 Start the Session . 66

DNx-MF-102 Multifunction I/O Board iii
Table of Contents

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.7 Analog Input Session. 67
4.7.1 Configure Input Channels . 67
4.7.2 Read Data. 69

4.8 Analog Output Session . 70
4.8.1 Configure Output Channels . 70
4.8.2 Write Data. 71
4.8.3 Read Diagnostic Data. 71

4.9 Industrial Digital Input Session . 72
4.9.1 Configure Input Channels . 72
4.9.2 Read Data. 73
4.9.3 Read Input Voltages . 74

4.10 Industrial Digital Output Session . 74
4.10.1 Configure Output Channels . 74
4.10.2 Write Data. 77
4.10.3 Read Output Voltages . 77

4.11 TTL Digital Input Session . 77
4.11.1 Configure Input Port . 77
4.11.2 Read Data. 77

4.12 TTL Digital Output Session . 78
4.12.1 Configure Output Port. 78
4.12.2 Write Data. 78

4.13 Counter Input Session . 79
4.13.1 Add Input Channels . 79
4.13.2 Route Counter to DIO Pins . 79
4.13.3 Counter Input Modes . 80
4.13.4 Read Count Data . 81

4.14 Counter Output Session . 82
4.14.1 Add Output Channels . 82
4.14.2 Route Counter to DIO Pins . 82
4.14.3 Counter Output Modes . 82
4.14.4 Write Output Parameters . 83

4.15 Diagnostics Session . 84
4.15.1 Add Input Channels . 84
4.15.2 Read Data. 85

4.16 Serial Port Session . 86
4.16.1 Configure the Port. 86
4.16.2 Read Data. 88
4.16.3 Write Data. 89

4.17 CAN Bus Port Session . 90
4.17.1 Configure CAN Port . 90
4.17.2 Read Data. 91
4.17.3 Write Data. 92

4.18 Stop the Session . 92

Chapter 5 Programming with Low-level API . 93

5.1 About the Low-level API . 93

5.2 Example Code . 94

DNx-MF-102 Multifunction I/O Board iv
Table of Contents

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.3 Data Acquisition Modes. 94
5.3.1 Async Events Mode . 95

5.4 Point-by-Point API . 95
5.4.1 Analog I/O. 96
5.4.2 Digital I/O . 96
5.4.3 Counters . 97
5.4.4 Serial Port . 99
5.4.5 CAN Ports. 101

5.5 Async Events API . 105

5.6 RtDMap API. 106
5.6.1 DMap Tutorial . 106

5.7 RtVMap API (Analog IO) . 109
5.7.1 VMap Tutorial . 109

5.8 RtVMap API (Serial) . 113
5.8.1 VMap Tutorial (Serial). 113

5.9 RtVMap API (CAN) . 116
5.9.1 VMap Tutorial (CAN) . 116

5.10 AVMap API . 120
5.10.1 AVMap Tutorial . 120

Appendix A Accessories . 123
A.1 General Purpose STP Board and Cable . 123
A.2 Test Adapter . 124

DNx-MF-102 Multifunction I/O Board v
List of Figures

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

List of Figures
Chapter 1 Introduction . 1

Chapter 2 I/O Functional Descriptions . 12
2-1 Block Diagram of DNx-MF-102 Analog Input...13
2-2 Block Diagram of DNx-MF-102 Analog Output..13
2-3 Block Diagram of DNx-MF-102 Industrial Digital I/O ...15
2-4 Simplified Circuit Diagram of an Industrial DIO Channel ...16
2-5 Typical PWM Soft Start cycle ..17
2-6 PWM Push/Pull output modes...17
2-7 Internal Structure of DNx-MF-102 Counter..19
2-8 Block Diagram of DNx-MF-102 Serial Port ..21
2-9 Example of Serial Transaction...22
2-10 Major Frame with Variable-length Minor Frames...23
2-11 CAN and the ISO/OSI Model ...24
2-12 Block Diagram of CAN Ports - Overview ...25
2-13 Block Diagram of CAN Ports - Detail ...26
2-14 Photo of DNR-MF-102 Board ..29
2-15 Pinout Diagram for DNx-MF-102 ...30
2-16 Analog Input Wiring ...33
2-17 Improper Analog Input Wiring ..33
2-18 Industrial Digital Output Wiring ..35
2-19 RS-232 Wiring ...35
2-20 RS-422 and RS-485 Full Duplex Wiring ..36
2-21 RS-485 Half Duplex Wiring..36
2-22 CAN Nodes Connected to a CAN Bus using Standard 120 Ω Termination...............37

Chapter 3 PowerDNA Explorer . 38
3-1 PowerDNA Explorer for DNx-MF-102..39
3-2 PowerDNA Explorer AI Tab ...41
3-3 PowerDNA Explorer AO Tab, Output Subtab..42
3-4 PowerDNA Explorer AO Tab, Guardian Subtab ..43
3-5 PowerDNA Explorer DI Tab...45
3-6 PowerDNA Explorer DO Tab, PWM Subtab..47
3-7 PowerDNA Explorer DO Tab, Output Subtab..48
3-8 PowerDNA Explorer Serial Tab, Configuration Subtab ...50
3-9 PowerDNA Explorer Serial Tab, Send/Receive Subtab ..51
3-10 PowerDNA Explorer CAN Tab, Configuration Subtab ...53
3-11 PowerDNA Explorer CAN Tab, Send/Receive Subtab..54
3-12 PowerDNA Explorer CT Tab, Quadrature Mode ...56
3-13 PowerDNA Explorer CT Tab, Bin Counter Mode...57
3-14 PowerDNA Explorer CT Tab, PWM Output Mode...58
3-15 PowerDNA Explorer CT Tab, Frequency Mode...59
3-16 PowerDNA Explorer TTL Tab, Input Subtab..60
3-17 PowerDNA Explorer TTL Tab, Output Subtab...61

Chapter 4 Programming with High-level API . 62

Chapter 5 Programming with Low-level API . 93

Appendix A Accessories . 123
A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel123

DNx-MF-102 Multifunction I/O Board vi
List of Tables

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

List of Tables
Chapter 1 Introduction . 1
1-1 Analog Input Specifications ..7
1-2 Analog Output Specifications ...8
1-3 Industrial Digital I/O Specifications ...9
1-4 TTL Digital I/O Specifications ...9
1-5 Counter/Timer Specifications ...10
1-6 RS-232/422/485 Port Specifications...10
1-7 CAN Bus Ports Specifications ..10
1-8 General and Environmental Specifications...11

Chapter 2 I/O Functional Descriptions . 12
2-1 DNx-MF-102 Counter Registers ...20
2-2 LED Indicators ..29
2-3 Analog I/O Pin Descriptions..32
2-4 Industrial Digital I/O Pin Descriptions ...32
2-5 Logic-level Digital I/O and Comm Port Pin Descriptions...32

Chapter 3 PowerDNA Explorer . 38

Chapter 4 Programming with High-level API . 62
4-1 DAQ Modes Supported by UeiDaq Framework..65
4-2 Analog Input Ranges (Volts)...67
4-3 Diagnostic Channel Numbers...84
4-4 High-level API for Serial Port Configuration..87

Chapter 5 Programming with Low-level API . 93
5-1 DAQ Modes Supported by the Low-Level API ...94
5-2 Low-level Analog I/O API..96
5-3 Low-level Digital I/O API ...96
5-4 Low-level Counter API..97
5-5 Counter Configuration Parameters ...97
5-6 Low-level Serial Port API ..99
5-7 Serial Port Configuration Parameters...100
5-8 Low-level CAN Port API ...101
5-9 Configuration Parameters set by DqAdv102CANSetChannelCfg102
5-10 SJA1000 Status Words Returned by DqAdv102CANGetStatus...............................104
5-11 Low-level Asynchronous Events API ..105
5-12 DMap Channels..106
5-13 VMap Channels ..109
5-14 VMap Subsystems and Channels for Serial Communication113
5-15 VMap Subsystems and Channels for CAN Communication.....................................116
5-16 AVMap Channels..120

Appendix A Accessories . 123

DNx-MF-102 Multifunction I/O Board
Chapter 1 1

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Chapter 1 Introduction

This manual outlines the feature set and use of the DNx-MF-102, a multifunction
board with analog and digital I/O, two CAN ports, and a serial port.

The following sections are provided in this chapter:

• Organization of this Manual (Section 1.1)

• Manual Conventions (Section 1.2)

• Naming Conventions (Section 1.3)

• Related Resources (Section 1.4)

• Before You Begin (Section 1.5)

• DNx-MF-102 Features (Section 1.6)

• Technical Specifications (Section 1.7)

1.1 Organization
of this Manual

This DNx-MF-102 User Manual is organized as follows:

• Introduction
Chapter 1 summarizes the features and specifications of the
DNx-MF-102.

• I/O Functional Descriptions
Chapter 2 describes the device architecture, logic, and connectivity of
the DNx-MF-102 subsystems.

• PowerDNA Explorer
Chapter 3 shows how to explore DNx-MF-102 features through a GUI-
based application.

• Programming with High-level API
Chapter 4 describes how to configure the DNx-MF-102, read data, and
write data with the Framework API.

• Programming with Low-level API
Chapter 5 provides an overview of C commands for configuring and
using the DNx-MF-102.

• Accessories
Appendix A provides a list of accessories available for use with the
DNx-MF-102.

DNx-MF-102 Multifunction I/O Board
Chapter 1 2

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.2 Manual
Conventions

The following conventions are used throughout this manual:

Tips are designed to highlight quick ways to get the job done or to
reveal good ideas you might not discover on your own.

CAUTION! advises you of precautions to take to avoid injury, data
loss, and damage to your boards or a system crash.

NOTE: Notes alert you to important information.

1.3 Naming
Conventions

The DNA-MF-102, DNR-MF-102, and DNF-MF-102 board versions are
compatible with the UEI Cube, RACKtangle, and FLATRACK chassis
respectively. These boards are electronically identical and differ only in
mounting hardware. The DNA version stacks in a Cube chassis, while the DNR
and DNF versions plug into the backplane of a Rack chassis. Throughout this
manual, the term DNx-MF-102 refers to both Cube and Rack products.

1.4 Related
Resources

This manual only covers functionality specific to the DNx-MF-102. To get started
with your Cube or Rack, please see the documentation included with the
software installation. On Windows, these resources can be found from the
desktop by clicking Start » All Programs » UEI

UEI’s website includes other user resources such as application notes, FAQs,
tutorials, and videos. In particular, the glossary of terms may be helpful when
reading through this manual: https://www.ueidaq.com/glossary

Additional questions? Please email UEI Support at uei.support@ametek.com or
call 508-921-4600.

Typeface Description Example
bold field or button names Click Scan Network
» hierarchy to get to a specific menu item File » New
fixed source code to be entered verbatim session.CleanUp()

<brackets> placeholder for user-defined text pdna://<IP address>

italics path to a file or directory C:\Program Files

https://www.ueidaq.com/glossary
https://www.ueidaq.com/glossary

DNx-MF-102 Multifunction I/O Board
Chapter 1 3

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.5 Before You
Begin

No Hot Swapping!
Before plugging any I/O connector into the Cube or RACKtangle, be sure to
remove power from all field wiring. Failure to do so may cause severe damage
to the equipment.

Check Your Firmware
Ensure that the firmware installed on the Cube or Rack CPU matches the UEI
software version installed on your PC. The IOM is shipped with pre-installed
firmware and a matching software installation. If you upgrade your software
installation, you must also update the firmware on your Cube or RACK CPU.
See “Firmware Update Procedures.pdf” for instructions on checking and
updating the firmware. These instructions are located in the following
directories:

• On Linux: PowerDNA_Linux_<x.y.z>/docs

• On Windows:
Start » All Programs » UEI » DNx Firmware Update Procedures

DNx-MF-102 Multifunction I/O Board
Chapter 1 4

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.6 DNx-MF-102
Features

The DNx-MF-102 Multifunction I/O Board is an ideal measurement solution for a
variety of automotive, aerospace and power generation applications. This
multifunction I/O board includes the following channels:

• 16 single-ended or 8 fully differential analog inputs

• 2 analog outputs

• 16 industrial digital I/O bits

• 4 TTL digital bits (2 input, 2 output)

• 2 counter/timers, routable to TTL or industrial digital I/O

• 1 RS-232/422/485 port

• 2 CAN ports (CAN 2.0A and CAN 2.0B are supported)

1.6.1 Analog Input The DNx-MF-102 is equipped with 16 independently configurable analog input
channels and an 18-bit A/D converter. Inputs are buffered to eliminate
multiplexer-based settling time issues. Each channel supports a sampling rate
of up to 2000 samples/s (32 kS/s aggregate), and channels can be paired to
measure in differential mode.

The board offers software-selectable A/D ranges between ±80 V to ±0.156 V.
The upper end eliminates the need for external signal conditioning, while the
lower end allows for precise measurements down to 1.19 microvolts resolution.

To improve noise immunity, an Embedded Averaging engine automatically
acquires as many samples as possible for the given gain/speed and calculates
the average.

1.6.2 Analog Output Two 16-bit analog output channels are independently configurable as either
voltage output or current output. Users may choose among software selectable
ranges up to ±10 V or 0-20 mA.

For applications requiring higher output current or voltage, please refer to the
DNx-AO-308-35x series boards.

1.6.3 Digital I/O The DNx-MF-102 includes 16 channels of industrial digital I/O and four channels
of logic-level I/O (two input and two output).

1.6.3.1 Industrial Bits The industrial digital I/O subsystem operates across a wide range, from 3.3 V to
55 VDC. Each industrial bit is independently configurable as either input or
output. Voltage is supplied in groups of 4 bits (up to 4 different VCCs across 16
bits).

Inputs: Each input is sensed with a dedicated 200 kHz A/D converter. High and
low thresholds are therefore programmable and state changes can be detected
with 5 microsecond resolution. Programmable pull up/down resistors allow
inputs to monitor contacts connected to a supply voltage or ground. In the
absence of an external supply voltage, the lines are weakly pulled up to an
internal 60 V supply (via a 2 MΩ resistor); this ensures that inputs allow the full
0-55 V range, but can be easily overdriven by an external source.

DNx-MF-102 Multifunction I/O Board
Chapter 1 5

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Outputs: Each output may be configured as either current sourcing (connect
output to Vcc) or sinking (connect output to Gnd). Outputs are rated for
continuous operation at 500 mA with an output voltage drop of less than 600 mV.
Each channel is protected with a 1.25 Amp fast-blow fuse.

Industrial digital outputs are equipped with an optional pulse-width modulated
(PWM) “soft-start” or “soft-stop” feature. This allows power to be applied/
removed gradually, greatly increasing the reliability of devices like incandescent
bulbs where thermal shock reduces life expectancy. The ‘soft-start” parameters
are selectable on a per-channel basis.

PWM can also be configured to run continuously for low speed, high voltage/
current applications. The board supports pulse-width resolution up to 16-bits and
frequency up to 10 kHz.

1.6.3.2 TTL Bits A total of four logic-level channels are provided: two channels are dedicated
input channels and two are dedicated output channels. Outputs use 5 V logic,
but inputs are compatible with either 3.3 V or 5 V.

1.6.3.3 Counters Two 32-bit counters perform up/down counting. Several flexible modes are
available including event counting, pulse-width/period measurements, and
quadrature decoding. Counter inputs and outputs can be routed to your choice
of industrial DIO or TTL DIO pins.

1.6.4 Communication
Ports

One RS-232/422/485 serial communication port and dual CAN ports round out
the board’s capabilities. CAN 2.0A and CAN 2.0B are supported.

1.6.4.1 RS-232/422/
485

The serial port is software configurable to RS-232, 422, or 485. The on-board
UART supports programmable baud rates from 300 baud to 2 Mbaud, character
width, parity, and stop bits.

1.6.4.2 CAN Bus Ports The DNx-MF-102 provides dual CAN bus ports. Data rates of up to 1 Mbps are
supported. The DNx-MF-102 is compatible with CAN 2.0A (11-bit identifiers) and
CAN 2.0B (29-bit identifiers).

1.6.5 Guardian
Diagnostics

The DNx-MF-102 includes the following built-in diagnostic features:

• Analog Inputs - monitor PGA and report out-of-range error with every
data sample

• Analog Outputs - monitor output voltage, supply voltage, and tempera-
ture on each channel and timestamp the start of each scan

• Industrial Digital Outputs - monitor output voltage and timestamp the
start of each scan

DNx-MF-102 Multifunction I/O Board
Chapter 1 6

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.6.6 Isolation &
Over-voltage
Protection

The DNx-MF-102 offers 350 Vrms of isolation between itself and other I/O
boards as well as between the I/O connections and the chassis. Separate
isolation zones are provided for each of the following signal types:

• Analog I/O (inputs and outputs have separate grounds)

• Industrial DIO

• TTL/Serial

• CAN 0

• CAN 1

1.6.7 Environmental
Conditions

Like all UEI I/O boards, the board offers operation in extreme environments and
has been tested to 5 g vibration, 100 g shock, from -40 to +85 °C temperatures
and will function at altitudes up to 70,000 feet.

1.6.8 Accessories The DNx-MF-102 is supported by UEI’s general purpose DNA-CBL-62
62-conductor round shielded cable and DNA-STP-62 Screw Terminal Panel.
See Section A.1 for more information.

For those wishing to create their own cables, all connections are through a
standard 62-pin “D” connector, allowing OEM users to build custom cabling
systems with off-the-shelf components.

1.6.9 Software
Support

The DNx-MF-102 includes a software suite supporting Windows, Linux, QNX,
VXWorks, RTX, and most other popular real-time operating systems. Windows
users may use the UeiDaq Framework, which provides a simple and complete
software interface to all popular programming languages and DAQ applications
(e.g., LabVIEW, MATLAB). All software includes example programs that make it
easy to copy-and-paste the I/O software into your applications.

DNx-MF-102 Multifunction I/O Board
Chapter 1 7

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.7 Technical
Specifi-
cations

The following tables list the technical specifications for the DNx-MF-102 board.
All specifications are for a temperature of 25°C±5°C unless otherwise stated.

1.7.1 Analog Input

NOTE: The accuracy specification may not be met for voltages that are within
99-100% of either end of the range.

Table 1-1 Analog Input Specifications
Number of channels 16 single-ended or 8 fully differential
Input configuration Multiplexed
ADC resolution 18 bits
Sampling rate 2000 samples/second per channel
High voltage mode Resolution Accuracy (at 25°C)
 ±80 V 610 µV ±24 mV
 ±20 V 153 µV ±6 mV
 ±5 V 38.1 µV ±2.5 mV
 ±1.25 V 9.54 µV ±700 µV
 Input impedance > 1.13 MΩ Diff / 1565 kΩ SE
 Input offset current < 72 µA
Overvoltage protection ± 100 Vdc
Low voltage mode Resolution Accuracy (at 25°C)
 ±10 V 76.3 µV ±1.125 mV
 ±2.5 V 19.1 µV ±300 µV
 ±0.625 V 4.77 µV ±170 µV
 ±0.156 V 1.19 µV ±115 µV
 Input impedance > 10 MΩ
 Input offset current ±1 nA max, ±0.5 nA typical
 Overvoltage protection ± 100 Vdc
Common mode rejection 100 dB typical (differential mode)
Isolation 350 Vrms (analog in and out share one ground)

DNx-MF-102 Multifunction I/O Board
Chapter 1 8

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.7.2 Analog Output
Table 1-2 Analog Output Specifications

Number of channels 2 channels
Resolution 16-bit resolution
Voltage Output mode
 Voltage output ranges ±10 V, ±5V at ±5 mA
 Output accuracy 3 ppm/°C typical, 10 ppm/°C max
 ±10 V ±3 mV
 ±5 V ±1.5 mV
 Output impedance < 0.1 Ω not including any cables
Current Output mode
 Current outputs 0-20 mA, 4-20 mA, -1-22 mA
 Output accuracy 3 ppm/°C typical, 10 ppm/°C max
 0-20 mA ±3 µA
 4-20 mA ±2.6 µA
 -1-22 mA ±3.5µA
 Maximum load resistance 750 Ω
Update rate 2000 updates/sec max, per channel
Settling time 100 µS to 0.03%
Isolation 350 Vrms (analog in and out share one ground)

DNx-MF-102 Multifunction I/O Board
Chapter 1 9

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.7.3 Industrial
Digital I/O

1.7.4 TTL Digital I/O

Table 1-3 Industrial Digital I/O Specifications
Number of channels 16 bits
I/O direction independently selectable per bit
Digital Input
 Input range 0-55 VDC
 Input high / low voltage Programmable from 0-55 VDC
 Input impedance > 1.1 MΩ

 Input open circuit state 98 kΩ pull-up or pull-down resistors are software
enabled.

 Input protection ±100 VDC
 Input clock rate 200 kHz
 Guardian input accuracy ±275 mV (15 ppm/°C)
 Input throughput 1 kHz max
Digital Output

 Configurations Current sink/source, Ground/open, or Vcc/open
(Vcc is user provided in banks of 4 bits)

 Output drive 500 mA per channel, continuous
 Output protection 1.25 Amp fast-blow fuse on each output
 Output voltage drop < 600 mV at 500 mA (Incl std 3’ cable)
 Output Off impedance > 1.1 MΩ
 Output Off leakage current < 50 µA (with 55 V input)
 Output throughput 1000 updates per second, max

 PWM output 0 to 100% in 0.0015% increments (16-bit
resolution)

 PWM cycle rate up to 10 kHz

Table 1-4 TTL Digital I/O Specifications
Number of channels 4 bits
I/O direction 2 bits input, 2 bits output
Logic level 5 V logic

DNx-MF-102 Multifunction I/O Board
Chapter 1 10

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.7.5 Counter/Timer

1.7.6 Serial Port

1.7.7 CAN Ports

Table 1-5 Counter/Timer Specifications
Number of counters 2
Resolution 32 bits

Max frequency
66 MHz for internal input clock
16.5 MHz for external input clock
33 MHz for outputs

Min frequency no lower limit

Internal 66 MHz timebase
Initial accuracy: ±10 ppm
Temp drift: ±15 ppm over full temp range
Time drift: ±5 ppm year one, then lower

Pulse-width/period accuracy 2 internal clock cycles (30 ns) on one or multiple
periods

External gate/trigger inputs 1 per counter, programmable polarity

Table 1-6 RS-232/422/485 Port Specifications
Number of Ports 1 port
Configuration software selectable RS-232, 422 or 485
Max baud rate RS-232: 256 kb/s, RS-422/485: 2 Mb/s
Baud rate selection 300 to 2 Mbaud, 0.01% or better accuracy
RS-232/485 transceiver MAX3160E with fail-safe RS-485 RX term
FIFO size 2048-word TX, 2048-word RX

Table 1-7 CAN Bus Ports Specifications
Number of Ports 2 ports
Interface specification Complies with CAN 2.0A and CAN 2.0B
Maximum data rate 1 Mbps

FIFO buffers TX: 128 messsages
RX: 256 messsages

DNx-MF-102 Multifunction I/O Board
Chapter 1 11

Introduction

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

1.7.8 General

*Shock and vibration specifications assume appropriate mounting/installation.

Table 1-8 General and Environmental Specifications

Electrical Isolation

350 Vrms of isolation between itself and other I/O
boards as well as between the I/O connections
and the chassis.
Separate isolation zones for:
• Analog I/O (inputs and outputs have separate

grounds)
• Industrial DIO
• TTL/Serial
• CAN 0
• CAN 1

Power Consumption < 5 W (not including output loads)
Operating Temp. (tested) -40 °C to +85 °C
Operating Humidity 95%, non-condensing
*Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broadband random

*Shock IEC 60068-2-27 100 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

Altitude 70,000 feet, maximum
MTBF 140,000 hours
Weight 4.9 oz (138 grams)

DNx-MF-102 Multifunction I/O Board
Chapter 2 12

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Chapter 2 I/O Functional Descriptions

This section describes the device architecture and hardware of each of the
DNx-MF-102 board’s functional blocks. The following sections are provided in
this chapter:

• Analog Input (Section 2.1)

• Analog Output (Section 2.2)

• Digital I/O (Section 2.3)

• Serial Port (Section 2.4)

• CAN Ports (Section 2.5)

• Indicators and Connectors (Section 2.6)

• Pinout (Section 2.7)

• Wiring Guidelines (Section 2.8)

2.1 Analog Input The DNx-MF-102 supports eight fully differential analog input channels. As
shown in Figure 2-1, the input lines are connected to 1/8th voltage dividers
(140 kΩ/1 MΩ) which may be switched on or off. These dividers allow the board
to accept input voltages up to +/- 80 V.
Each input is buffered to reduce multiplexer settling time issues and increase
accuracy for high impedance sources. A multiplexer passes the inputs one by
one into a programmable gain amplifier (PGA). The 18-bit A/D converter
samples the multiplexed channel and performs signal averaging for further noise
reduction.
If desired, each differential channel may be configured as 2 single-ended
channels for a maximum of 16 single-ended channels. In single-ended mode, an
on-board multiplexer connects the negative terminal of the differential A/D
converter to ground. When using single-ended mode, we recommend
configuring the analog input channels to use a moving average to aid in
compensating for any noise that may be present. Both the UeiDaq Framework
and low-level API provide support for configuring analog inputs to use moving
averages.
The I/O circuitry is optically isolated from the control logic.

DNx-MF-102 Multifunction I/O Board
Chapter 2 13

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 2-1 Block Diagram of DNx-MF-102 Analog Input

2.1.1 Analog Input
Diagnostics

The DNx-MF-102 monitors the PGA output and reports if the currently sampled
channel exceeds the input range. Over-voltage suggests that data for this
sample and the next could be invalid.

2.2 Analog
Output

As shown in Figure 2-2, the DNx-MF-102 is equipped with two analog output
channels. Each channel may be independently configured to output either
voltage or current through its own dynamic 16-bit D/A converter. All analog input
and output channels share the same ground and same reference but are
isolated from the control logic.The FPGA writes to both DACs simultaneously
and the two output channels are synchronized within 1.5 µs.

Figure 2-2 Block Diagram of DNx-MF-102 Analog Output

DNx-MF-102 Multifunction I/O Board
Chapter 2 14

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.2.1 Analog Output
Diagnostics

Each output channel is equipped with a diagnostic 12-bit ADC built into its DAC.
The diagnostic ADC reports DAC overload and has 4 read back channels:

• DAC temperature

• Voltage on AOut

• Voltage on AGnd

• Supply voltage
In voltage output mode, the supply voltage should read approximately 15 V. In
current output mode, the supply voltage is dynamically regulated to 4.95 V or
(IOUT × RLOAD + headroom), whichever is greater. The headroom has a
minimum value of 2.3 V.

DNx-MF-102 Multifunction I/O Board
Chapter 2 15

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.3 Digital I/O The DNx-MF-102 digital I/O subsystem includes 16 industrial I/O channels, and
four TTL I/O channels. Two of the TTL channels are dedicated input channels
and two are dedicated output channels. Each industrial I/O channel is
independently configurable. All digital I/O signals are isolated from the FPGA.

2.3.1 Industrial
Digital I/O

Figure 2-3 shows a simplified block diagram of the ADC-based digital I/O
subsystem. DIO channels may be configured as either input or output.
Inputs are buffered to protect against input loading and simultaneously sampled
at 200 kHz by 14-bit A/D converters (one ADC per DIO channel). The control
logic compares the ADC voltage to user-defined High and Low thresholds and
returns the digital state. Inputs may also be debounced with programmable
delays. The source impedance of digital inputs should be 5 kΩ or below.

NOTE: While the ADC can technically read in the DIn lines as if they were
analog inputs, this is not a recommended use of these channels.

.

Figure 2-3 Block Diagram of DNx-MF-102 Industrial Digital I/O

Outputs are switched by a FET-based circuit (Figure 2-4) and require an
external DC power supply. Up to 4 different +DVcc’s may be supplied to the
DNx-MF-102 board. Users should ensure that each +DVcc can supply enough
current for all four channels it powers, up to 500 mA max/channel.

DNx-MF-102 Multifunction I/O Board
Chapter 2 16

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 2-4 Simplified Circuit Diagram of an Industrial DIO Channel

As illustrated in Figure 2-4, each output is set to LOW, HIGH, or OFF by a high-
side/low-side pair of FETs. When the FPGA writes a 1 on the Dout_HIGH line,
the high-side FET turns on and connects the DIO pin to +DVcc (current
sourcing). When a 1 is written to the DOut_LOW line, the low-side FET connects
the DIO pin to DGnd (current sinking). The control logic prevents both FETs from
being on currently. When both high- and low-side FETs are disabled, the pin can
be used as a dedicated input.
Each pin’s open-circuit state is software programmable to DVcc, Gnd, or
DVcc/2. This is achieved by connecting the pin to an internal 98 kΩ pull-up
resistor, 98 kΩ pull-down resistor, or both resistors respectively.

NOTE: The industrial digital output channels do NOT include built-in anti-
kickback diodes. If the channel is used to source or sink an inductive
load, we recommend connecting an external diode to protect the FETs
against induced voltage spikes (see Section 2.8.2 for wiring
information).

If +DVcc is disconnected, the positive rail is automatically pulled up to an internal
+60 V supply by a 2 MΩ resistor. The internal supply prevents accidental floating
inputs and allows digital inputs to work properly without a user-supplied +DVcc.
A user-supplied +DVcc is only required for digital outputs.

When pulled up to the +60 V supply, an unused DIO pin will have some voltage
under 60 V (varies with the number of DO pins driving HIGH). The large 2 MΩ
pull-up resistance protects user equipment from this voltage. To set the unused
pin to zero, you can add an external 100 kΩ pull-down resistor.

DNx-MF-102 Multifunction I/O Board
Chapter 2 17

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.3.1.1 Pulse Width
Modulation

The DNx-MF-102 offers built-in pulse width modulation (PWM) on industrial
digital outputs. PWM mode, frequency, duty cycle, and push/pull mode are per
channel configurable.
PWM modes include:

• Continuous PWM - The duty cycle is constant over the entire period of
operation. A typical application for this feature is a dimmer for an
incandescent indicator light in which the average voltage applied to a
bulb is increased or decreased by varying the PWM duty cycle.

• Soft Start - As shown in Figure 2-5, a soft start increases the PWM duty
cycle gradually from 0% up to the configured steady-state value. This
feature is useful in preventing premature burnout of devices (such as
incandescent bulbs) caused by too rapid heating on startup.

• Soft Stop - Soft stop is the opposite of soft start. The duty cycle
decreases gradually down to 0% when the output transitions from HIGH
to LOW. The typical application for soft stop mode is a soft start
operation that is implemented with inverted logic.

Figure 2-5 Typical PWM Soft Start cycle

A PWM output can be configured to switch one or both FETs in the channel. A
break-before-make interval prevents both FETs from being on at the same time,
as shown in Figure 2-6.

Figure 2-6 PWM Push/Pull output modes

It is also possible to generate pulse trains using the counters described in
Section 2.3.3. However, the built-in PWM system is easier to use and therefore
recommended for industrial digital outputs.

Push and Pull: switch both FETs; break-before-make is visible

Push: switch only high-side FET

Pull: switch only low-side FET

DNx-MF-102 Multifunction I/O Board
Chapter 2 18

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.3.1.2 Digital Output
Diagnostics

Because DOut and DIn share the same pin, the board can readback DOut
voltage through the Din ADC. The board does not currently support output
current monitoring, but it does provide over-current protection using a 1.25 A
fast-blow fuse on each output channel.

2.3.2 TTL Digital I/O The TTL bits use 5 V logic levels (an input between 2 V and 5 V is a HIGH, while
a voltage below 0.8 V is a LOW). The DNx-MF-102 is capable of single read/
write into the registers as well as continuous clock reads and writes. PWM
signals can be generated on TTL outputs via the counter subsystem described
in Section 2.3.3.

2.3.3 Counters Industrial and TTL DIO pins may be routed to two 32-bit counters in order to
perform a number of customizable operations including:

• Timer: count off a user-defined time interval

• Event Counter: count the number of rising or falling edges on a signal

• Bin Counter: count the number of pulses in the specified time interval

• Pulse-Width/Period: measure the width of the positive and/or negative
parts of the input signal

• Timed Pulse Period Measurement: measure average frequency of
incoming pulses over a user-defined time interval

• Quadrature Decoder: measures relative position from a quadrature
encoder sensor

• PWM Generator: output a pulse-width-modulated waveform and
update its period and duty cycle on the fly

As shown in Figure 2-7, each counter has three lines:
• Input clock (CLKIN): takes in the signal to be measured

• Output clock (CLKOUT): drives one or more digital output pins
according to the counter’s mode of operation

• Gate/Trigger input (GATE): takes in a gating signal, start/stop/restart
trigger, or the quadrature encoder direction

Both input lines are connected to de-bouncers to eliminate unwanted spikes in
the signals. The counter counts up to 2^32 and can be clocked by either CLKIN,
a 66 MHz internal base clock, or a divided version of either clock.

NOTE: If the counter is routed to industrial digital inputs, the measurement
resolution is limited by the 200 kHz DIn ADC clock rate (e.g., pulse width
will be returned in 2.5 µs increments). TTL-level inputs do not use the
ADC and can therefore be measured down to 15 ns.

The counter’s behavior is defined according to the values of the registers shown
in Figure 2-7 and described in Table 2-1. Refer to Chapter 4 and Chapter 5 for
information about configuring the counting modes.

DNx-MF-102 Multifunction I/O Board
Chapter 2 19

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 2-7 Internal Structure of DNx-MF-102 Counter

66 MHz base
 clock

CLKIN

CLKOUT

GATE

PS

Output Control Logic
CR

IER Interrupt
Enable register

ISR Interrupt
Status register

ICR Interrupt
Clear register

CTR Control
register

CCR Counter
Control register

PC Period Count
Register

CR0 Compare Reg 0

CR1 Compare Reg 1

LR Load Register

CRH Capture Register HI

CRL Capture
Register LOW

TBR
Timebase Register

STR Status
Register

Output FIFO
256x32-bits

Input FIFO
256x32-bits

De-bouncer
for CLKIN
and GATE

inputs

32-bit prescaler
 DBC/DBG

Creates CLKOUT waveform

Configured to
divide either

Main Counter Register

66 MHz or CLKIN

200 kHz ADC
 clock

DNx-MF-102 Multifunction I/O Board
Chapter 2 20

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Table 2-1 DNx-MF-102 Counter Registers

Reg Name Description

CCR Counter Control
Register

defines the operation mode of the counter and
prescaler

CR Main Counter Register stores the count; counts upward in all modes
except for quadrature decoder mode which
allows both up and down counting

CR0 Compare Register 0 defines how long CLKOUT stays low

CR1 Compare Register 1 defines how long CLKOUT stays high

CRH Capture Register HIGH used when the counter measures parameters
of the CLKIN signal

CRL Capture Register LOW used when the counter measures parameters
of the CLKIN signal

CTR Control Register enables/disables the counter, enables/disables
inversion mode for I/O pins and buffered FIFO
operation

ICR Interrupt Mask Register clears interrupt condition(s) after a CPU
processes them

DBC CLKIN De-bouncing
Register

defines number of 66 MHz clock cycles for
which the Input Clock signal must be stable

DBG GATE De-bouncing
Register

defines number of 66 MHz clock cycles for
which the Gate signal must be stable

IER Interrupt Enable
Register

enables/disables interrupt generation; 16
interrupt conditions are available

ISR Interrupt Status
Register

reports status of the enabled interrupts

LR Load Register stores the initial value from which the counter
starts counting

PC Period Count Register used when measuring a signal that is too fast
to read every period; data from CR is supplied
only when measured data has accumulated
over N periods

STR Status Register reports current status of the counter operation

TBR Timebase Register defines the measurement time interval in
certain modes

DNx-MF-102 Multifunction I/O Board
Chapter 2 21

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.4 Serial Port The DNx-MF-102 offers a fully isolated serial interface which is software-
configurable as RS-232 or RS-485 (half or full-duplex). The board is also
compatible with RS-422 networks when used in RS-485 full-duplex mode. A
block diagram of the serial subsystem is shown in Figure 2-8. A MAX3160E
transceiver translates voltage levels on the TX and RX lines to logical zeros and
ones. The data stream to and from the MAX3160E is controlled by an emulated
UART 16550 serial controller, which reads and writes data from 2048-word
FIFOs.

Figure 2-8 Block Diagram of DNx-MF-102 Serial Port

The remainder of this section is intended as a review of serial port concepts to
supplement the programming chapters.

2.4.1 What is a
Serial Port?

A serial port transfers data one bit at a time over a given line. RS-232/422/485
standards define the hardware connection between sender and receiver, such
as the number of lines, the wiring scheme, and the signal’s electrical
characteristics. Please see Section 2.8.3 for wiring diagrams.

2.4.1.1 RS-232
Overview

An RS-232 interface provides a bidirectional, full-duplex, serial connection from
1 transmitter to 1 receiver over short distances. RS-232 requires three wires:
RX, TX, and a common ground. Voltages on TX and RX are bipolar (±5V on the
DNx-MF-102) and measured relative to the ground wire An example TX signal
is shown in Figure 2-9. The EIA/TIA RS-232-C (1969) standard recommends
distances of less than 50 feet at signaling rates below 19200 baud; noise
becomes a problem as baud rate and line length increase.

2.4.1.2 RS-422
Overview

The RS-422 specification was designed to provide a unidirectional, full-duplex,
serial connection from 1 transmitter to up to 10 receivers. RS-422 requires four
wires for balanced differential signaling: Rx+, Rx-, Tx+, and Tx-. The MAX3160E
transceiver drives outputs at 0V and 5V, as shown in Figure 2-9, and reads in
voltages up to ±7V per the specification. The voltage difference between the two
+/- wires represents the signal value, rather than the voltage level of just one
wire. This approach eliminates a significant amount of noise and permits higher
data rates and cable lengths compared to RS-232. While RS-422 was designed
to support a multi-drop topology, in practice it is most commonly used as a long-
distance substitute for RS-232 point-by-point topologies.

DNx-MF-102 Multifunction I/O Board
Chapter 2 22

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.4.1.3 RS-485
Overview

An RS-485 interface provides a bidirectional serial connection between 32
transmitters and 32 receivers. A twisted wire pair is required for balanced
differential signaling: Data+ and Data-. The MAX3160E transceiver transmits
data at 0 V and 5 V and accepts voltages over the required common mode
range of -7 V to +12 V. The user designs the access protocol, which usually
involves one “master” device that coordinates one slave device (of 31) to
transmit at a time.

2.4.2 Serial
Transactions

The UART 16550 controller takes characters to be transmitted from a 2048 x
8-bit word TX FIFO and assembles them into UART frames by adding start,
parity, stop bits, delays. Received characters are parsed from the frame and
stored in a 2048 x 8-bit word RX FIFO.
A typical UART data frame is illustrated in Figure 2-9. The frame consists of:

• Start Bit: Signals that data bits will follow.

• Data Bits: Characters are sent LSB first. Default character width is 8
bits but may be reduced to 5, 6, or 7 bits.

• Parity Bit: Optional error correction bit that checks whether the number
of 1’s in the data is odd or even.

• Stop Bit: Sets line to the idle state so that the next Start Bit can be seen.

The serial port on the DNx-MF-102 is capable of baud rates up to 256 Kbits/s for
RS-232 and 2 Mbits/s for RS-422/485. This rate includes the start, parity, and
stop bits.

Figure 2-9 Example of Serial Transaction

DNx-MF-102 Multifunction I/O Board
Chapter 2 23

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.4.3 Minor and
Major Frames

UART frames, as described above, can be grouped together into a minor frame.
Minor frames can be assembled into a major frame, and the transmitter can be
configured to auto-repeat the major frame. The delays between when the next
character, minor frame, and major frame are sent to the TX FIFO are all
programmable.

Figure 2-10 Major Frame with Variable-length Minor Frames

2.4.4 Flow Control Flow control is useful in situations where the transmitter sends data faster than
the receiver process it.The DNx-MF-102 serial port supports hardware
handshaking in RS-232 mode. The Request to Send (RTS) pin is asserted when
the DNx-MF-102 is ready to receive data. RTS is de-asserted when the RX FIFO
has filled up to a configurable watermark level. Before sending data, the
DNx-MF-102 checks if the receiver has set the Clear to Send (CTS) pin to a
positive voltage level.

2.4.5 Loopback
Diagnostics

When enabled, the loopback feature connects RX to TX internally and disables
external signals from being generated. Software and port settings can then be
tested independent of external devices and wiring.

DNx-MF-102 Multifunction I/O Board
Chapter 2 24

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.5 CAN Ports The DNx-MF-102 provides two independent CAN ports. The ports support bit
transfer rates of 50, 100, 125, 250, 500, 800, and 1000 kbps. Both CAN 2.0A
(11-bit identifiers) and CAN 2.0B (29-bit and 11-bit identifiers) are supported.

2.5.1 What is CAN? A Controller Area Network (CAN) is a multi-cast, shared, serial bus standard
designed to operate in electromagnetically noisy environments, such as
automotive and general industrial locations. The shared serial bus is called a
CAN bus.
Machines, sensors, and other devices on the CAN bus are nodes.
In a vehicle, for example, the CAN bus can control a car’s dashboard displays,
power windows, power locks, windshield wipers, exterior lighting, and so forth.
Another higher-speed CAN bus can control the engine and brake system
operation.

2.5.2 CAN Port
Architecture

The following provides an overview of the software architecture for the
DNx-MF-102 dual CAN ports.

2.5.2.1 CAN and the
OSI Model -
Overview

The CAN communication stack may be represented using the OSI model, as
shown in Figure 2-11. The physical and data-link layers are implemented by the
DNx-MF-102 hardware.

Figure 2-11 CAN and the ISO/OSI Model

Data Link

Physical

CAN-based Protocol Standard

Application

Presentation
Session

Transport
Network

So
ftw

ar
e

Acceptance Filtering
Recovery Management

Frame Coding
Serialization/deserialization

Error Detection

Bit Encoding/Decoding & Timing

Driver/Receiver Characteristics

Cable & Connectors

Logical Link Control

Media Access Control

Physical Signaling

PMA

MO Interface

Data Link

Physical

IS
O

11
89

8
C

AN
2.

0A

MF-102
CAN Controller
SJA1000

MF-102
CAN Transceiver
TJA1050

UeiDaq Framework

PowerDNA Driver

API

Driver

MF-102 Connectors

Cables

– Create CAN frames
– Transceive CAN frames

Software support facilities that
are not part of the OSI Model

DNx-MF-102 Multifunction I/O Board
Chapter 2 25

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Frames are retrieved from the DNx-MF-102 by the PowerDNA driver and
passed to the user application (usually by facility of the UeiDaq Framework).
The user application is allowed the freedom and responsibility of implementing
the layers above the data-link and physical layers with any additional protocol
you choose to use (such as CANopen, J1939, DeviceNet, SDS, CAN Kingdom,
proprietary, or custom).
At the hardware level, data passes at the physical level through cabling and the
connector through the TJA1050 CAN transmitter/receiver, which is controlled by
the SJA100 CAN controller:
A block diagram of the DNx-MF-102 CAN port is shown in Figure 2-12.

Figure 2-12 Block Diagram of CAN Ports - Overview

As illustrated in Figure 2-13, the CAN bus transmits and receives electrical
signals that flow through the to 62-pin connector, from/to the TJA1050 CAN
transceiver chip. The TJA1050 CAN transceiver acts as an interface to the
SJA1000 CAN interface controller – it assists the SJA1000 by handling
transmission/reception to/from the CAN bus.
The transceiver and controller are isolated from one another by a high-speed
electrical isolation IC. There are two TJA1050 » isolation » SJA1000 structures,
one per port; isolation is per-port.
The SJA1000 is in turn controlled by an FPGA Control Chip. The FPGA works in
conjunction with the CPU module’s logic.

6
2

-p
in

 C
o

n
n

ec
to

r

3
2

-b
it

 6
6

-M
H

z
b

u
s

Electrical Isolation

N
IS

 F
P

G
A

C
o

n
tr

o
l L

o
g

icCAN
Transceiver

CAN
Transceiver

CAN Interface
Controller

CAN Interface
Controller

DNx-MF-102 Multifunction I/O Board
Chapter 2 26

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 2-13 Block Diagram of CAN Ports - Detail

2.5.3 CAN Port
Capabilities

The CAN controller is capable of communicating using the CAN 2.0A and
CAN 2.0B protocols. Controller communication speeds are software selectable
between 50 kbps and 1 Mbps – speed is dependent on noise and cable length.
The CAN specification recommends a maximum speed of 125 kbps for cables
up to 500 m in length and a maximum speed of 1 Mbps for cables up to 40 m.
The device can be operated in single-scan, continuous, or continuous with FIFO
modes. The 64-byte FIFO on the SJA1000 can store up to 21 messages. The
controller can operate in active transmission mode or passive listen-only mode.
The controller has built-in filter-circuitry to target specific messages.
The TJA1050 uses an EMI-resistant differential receiver to capture data from the
line. It can operate in “listen mode” where the transmitter is disabled, and can
send/receive raw CAN data at speeds up to 1 Mbaud. In the DNx-MF-102
implementation, a bandwidth of two ports at 500 kbps each (i.e., 1 Mbps total)
can be sustained effortlessly over a local CAN bus. Also, note that when
powered down, the TJA1050 and the DNx-MF-102 do not disturb the bus lines.

DNx-MF-102 Multifunction I/O Board
Chapter 2 27

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.5.4 Filtering CAN
Frames

The SJA1000 CAN Controller provides an acceptance filter that is useful for
accepting or rejecting groups of CAN messages (frames), thereby reducing the
processing load of the host.
An acceptance mask defines the bit positions in the frame that are relevant for
the comparison (0 is relevant, 1 is not). For a frame to be accepted, all relevant
received bits must match the corresponding bits in the acceptance code. Note
that if a bit in the frame ID does not match the corresponding acceptance code
bit, the frame may still be accepted if that bit position is marked as not relevant
in the acceptance mask and all other acceptance criteria are met.
For each bit, if (((ID==code) OR mask) == 1), then the frame is accepted.
In Basic (standard) Mode, only the eight most significant bits of the 11-bit
identifier are checked when filtering the frame. The three least significant bits
are ignored. If the eight most significant bits meet the acceptance criteria, the
frame will be accepted.
In Extended Mode, frames may contain 29-bit or 11-bit identifiers. In either case,
all bits of the identifier that are marked as relevant are checked.

Example 1, Basic Frame, 11-bit filtering:

When a port is configured for Basic Mode, i.e., CAN 2.0A, frames will contain
11-bit identifiers. However, the SJA1000 Acceptance Code Register (ACR) and
Acceptance Mask Register (AMR) are only eight bits wide. Therefore, only the
eight MSBs of a frame are considered for filtering.
In the following example, frames where ID bits 10:9 and 5:3 match ACR bits 7:6
and 2:0 will be accepted. ID bits 8:6 are not relevant (corresponding mask bit set
to 1) and ID bits 2:0 are not considered for filtering.

x - indicates don’t care

MSB LSB
ACR/ACM Reg. Bit No. 7 6 5 4 3 2 1 0

Acceptance Code 0 1 1 1 0 0 1 0

Acceptance Mask 0 0 1 1 1 0 0 0

Accepted Frames 0 1 x x x 0 1 0 x x x

Frame ID Bit No. 10 9 8 7 6 5 4 3 2 1 0

DNx-MF-102 Multifunction I/O Board
Chapter 2 28

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Example 2, Extended Frame, 11-bit filtering:

When a port is configured for Extended Mode, i.e., CAN 2.0B, frames may
contain either 29-bit or 11-bit identifiers. In Extended Mode, the SJA1000
provides four 8-bit wide ACRs and AMRs (ACR0:3 and AMR0:3). For frames
with 11-bit identifiers, the 11 most significant bits of the identifier are filtered
using ACR0/AMR0 and the upper 4 bits of ACR1/AMR1 (including the RTR bit).
In the following example, frames where ID bits 10:9, 5:3, and 1:0 match the
corresponding ACR bits will be accepted. ID bits 8:6, 2, and the RTR bit are not
relevant (corresponding mask bit set to 1).

X - irrelevant
x - indicates don’t care, only the upper 4 bits of ACR1 and AMR1 are used

Example 3, Extended Frame, 29-bit filtering:

For frames with 29-bit identifiers, the 29 bits are filtered using ACR0:2/AMR0:2
and the upper 6 bits of ACR3/AMR3 (including the RTR bit).
In the following example, frames where ID bits 28:14, 12:9, and 4:0 match the
corresponding ACR bits will be accepted. ID bits 13, 8:5, and the RTR bit are not
relevant (corresponding mask bit set to 1).

X - irrelevant
x - indicates don’t care, only the upper 6 bits of ACR3 and AMR3 are used

See Section 4.17.1 for information on filtering frames using the UeiDaq
Framework (High-level API).
See Section 5.4.5.1 for information on filtering frames using the Low-level API.

Additional information for defining the acceptance code and mask can be found
on the NXP website in the Application Note document for the SJA1000
Stand-alone CAN Controller starting at page 18.

https://www.nxp.com/docs/en/application-note/AN97076.pdf

n 0 1 (4 MSBs) 2 3

ACRn 01XX X010 X10X XXXX XXXX XXXX XXXX

AMRn 0011 1000 1001 1111 1111 1111 1111

Accepted Frames
(ID.10..ID.0, RTR)

01xx x010 x10x

n 0 1 2 3 (6 MSBs)

ACRn 1011 0100 1011 000X 1100 XXXX 0011 0XXX

AMRn 0000 0000 0000 0001 0000 1111 0000 0111

Accepted Frames
(ID.28..ID.0, RTR)

1011 0100 1011 000x 1100 xxxx 0011 0x

DNx-MF-102 Multifunction I/O Board
Chapter 2 29

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.6 Indicators
and
Connectors

Figure 2-14 shows the locations of the LEDs and connectors on the
DNx-MF-102. The LED indicators are described below in Table 2-2.

Figure 2-14 Photo of DNR-MF-102 Board

Table 2-2 LED Indicators

LED Name Description

RDY READY: board is powered up and operational

STS

STATUS:
OFF: Configuration mode (e.g. configuring channels, running in
Point-by-Point mode)
ON: Operation mode (e.g. running in DMap or VMap mode)

RDY LED
STS LED

 DB-62 (female)
62-pin I/O connector

DNR bus
connector

DNx-MF-102 Multifunction I/O Board
Chapter 2 30

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.7 Pinout Figure 2-15 illustrates the pin configuration for the DNx-MF-102 board.
Connections are made through a standard DB-62 female connector.
Signals are isolated in the following groups:

• Analog I/O (in blue): AIn returns on AGnd, AOut 0 returns on AGnd 0,
and AOut 1 returns on AGnd 1. Refer to Table 2-3.

• Industrial DIO (in red): referenced to DGnd.
Refer to Table 2-4.

• TTL DIO and Serial (in black): referenced to TTL/RS Gnd.
Refer to Table 2-5.

• CAN0 (in green): referenced to CAN0 Gnd.
Refer to Table 2-5.

• CAN1 (in purple): referenced to CAN1 Gnd.
Refer to Table 2-5.

Figure 2-15 Pinout Diagram for DNx-MF-102

No Hot Swapping!

Before plugging any I/O connector into the Cube or RACKtangle, be sure to
remove power from all field wiring. Failure to do so may cause severe damage
to the equipment.

g
SHIELD

Pin Signal
1 RTS232/TX485+
2
3
4 DIO-02
5 DIO-00
6 DIO-06
7 DIO-04
8 DIO-10
9 DIO-08
10 DIO-14
11 DIO-12
12
13
14 AGnd 1
15 AGnd 0
16 AIn 1/0-
17 AIn 5/2-
18 AIn 7/3-
19 AIn 9/4-
20 AIn 13/6-
21 AIn 15/7-

Pin Signal
22 TX232/TX485-
23
24
25 DGnd
26 DV 0-3
27 DGnd
28 DV 4-7
29 DGnd
30 DV 8-11
31 DGnd
32 DV 12-15
33
34
35 AOut 1
36 AOut 0
37 AIn 0/0+
38 AIn 4/2+
39 AIn 6/3+
40 AIn 8/4+
41 AIn 12/6+
42 AIn 14/7+

Pin Signal
43 CTS232/RX485-
44 RX232/RX485+
45
46
47 DIO-03
48 DIO-01
49 DIO-07
50 DIO-05
51 DIO-11
52 DIO-09
53 DIO-15
54 DIO-13
55
56
57 AIn 3/1-
58 AIn 2/1+
59 AGnd
60 AGnd
61 AIn 11/5-
62 AIn 10/5+

DNx-MF-102 Multifunction I/O Board
Chapter 2 31

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

If you design your own cables, we recommend separating the five isolated
groups (analog I/O, industrial DIO, TTL/Serial, and two CAN groups) using
dedicated wiring and shielding.

DNx-MF-102 Multifunction I/O Board
Chapter 2 32

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Table 2-3 Analog I/O Pin Descriptions

Pin Name Pin # Description
A

na
lo

g
In

AGnd 59-60 Ground for analog inputs

AIn n/m+ 37-42,
58, 62

Single-ended channel n or positive terminal of differential analog input
channel m. Ground any unused pins

AIn n/m- 16-21,
57, 61

Single-ended channel n or negative terminal of differential analog input
channel m. Ground any unused pins

A
na

lo
g

O
ut

AOut n 35-36 Signal pin for analog output channel n

AGnd n 14-15

Ground for analog output channel n.
AGnd, AGnd 0, and AGnd 1 are internally connected, but AGnd 0/1 are
matched to AOut 0/1 respectively on the PCB to minimize noise and
voltage drops across the outputs

Table 2-4 Industrial Digital I/O Pin Descriptions

Pin Name Pin # Description

In
du

st
ria

l D
IO DIO-n 4-11,

47-54 Signal pin for FET-based industrial digital I/O channel n.

DV n-m 26, 28,
30, 32

User-supplied Vcc for DIO channels n-m. Up to 4 different Vcc’s can be
supplied to the port in blocks of 4 channels

DGnd 25, 27,
29, 31 Ground for industrial DIO port

Table 2-5 Logic-level Digital I/O and Comm Port Pin Descriptions

Pin Name Pin # Description

TT
L

D
IO TTL DIn n 3, 46 Signal pin for TTL input n

TTL DOut n 2, 45 Signal pin for TTL output n

+5V-TTL 24 Provides a constant +5 V with max output current 20 mA

C
A

N

CAN-Hn 13, 56 Dominant High line for CAN port n

CAN-Ln 12, 55 Dominant Low line for CAN port n

CANn Gnd 33-34 Ground for CAN port n

Se
ria

l

RS-232 RS-422 full duplex RS-485 half-duplex

RTS232/TX485+ 1 Request to Send
(RTS) Send (Tx+) Data (+)

TX232/TX485- 22 Send (Tx) Send (Tx-) Data (-)

CTS232/RX485- 43 Clear to Send (CTS) Receive (Rx-) n/a

RX232/RX485+ 44 Receive (Rx) Receive (Rx+) n/a

TTL/RS Gnd 23 Ground for TTL DIO and Serial

DNx-MF-102 Multifunction I/O Board
Chapter 2 33

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.8 Wiring
Guidelines

The following wiring schemes are recommended when connecting external
devices to the DNx-MF-102.

2.8.1 Analog Input
Wiring

The recommended approach for analog input wiring depends on if the signal
source is grounded or floating. Grounded signals are connected to the earth,
such as signal generators or an RTD bridge circuit powered by a desktop power
supply. Floating signals are isolated from the earth; examples include
thermocouples, batteries, or instruments with isolated outputs.

Figure 2-16 Analog Input Wiring

2.8.1.1 Grounded
Signals

As shown in Figure 2-16, all grounded signals should have the signal source
ground wired directly to AGnd on the DNx-MF-102. All AIn pins are measured
relative to the same AGnd. In differential mode, the AIn+ and AIn- inputs are
referenced to AGnd and then subtracted to remove voltages common to both
channels.

2.8.1.2 Floating
Signals

Generally speaking, floating differential inputs should have AIn- connected to
AGnd via a resistor. If there is no connection to AGnd, the input voltages may
float to a value that exceeds the amplifier’s common mode range.

Figure 2-17 Improper Analog Input Wiring

Signal Type Single-Ended Mode Differential Mode

Grounded

Floating

DNx-MF-102 Multifunction I/O Board
Chapter 2 34

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

A resistor between 10 kΩ < R < 100 kΩ is small enough to provide a path to
ground for input bias current, while large enough to allow AIn- to float relative to
the voltage reference. The external resistor may be disregarded if the 1/8th
divider is turned ON; this scales down input voltages to be safely within the
common mode range.

NOTE: Unused AIn pins should be tied to ground. This can be done internally
by enabling the 1/8th divider on unused channels. Disconnected AIn
pins will cause the PGA to saturate, which can lead to incorrect readings
on subsequent channels in the multiplexer scan list. Other unused pins
on the board may be left disconnected.

2.8.2 Industrial
Digital Output
Wiring

When using the industrial digital output subsystem, ensure that DVcc is
connected to the user’s power supply (0-55 VDC). A disconnected DVcc will not
damage the DNx-MF-102 but may cause unexpected digital input readings as
the outputs switch ON/OFF.
A load may be wired to the output in any of the following configurations:

• Push Mode: DNx-MF-102 acts as a switch between DVcc and the out-
put, sourcing current to the load when the switch is on. An example cir-
cuit is shown in Figure 2-18a.

• Pull Mode: DNx-MF-102 acts as a switch between the output pin and
DGnd, sinking current from the load when the switch is on. An example
circuit is shown in Figure 2-18b.

• Push-Pull Mode: DNx-MF-102 connects the output to either DVcc or
DGnd, never both at the same time. An example dual-channel circuit is
shown in Figure 2-18c. Current flows through the solenoid when one
channel is set HIGH and the other channel is set LOW. The current is
easily reversed by inverting the outputs.

Note that the diagrams in Figure 2-18 include an optional external anti-kickback/
flyback diode. UEI recommends adding the diode when driving inductive loads
such as relays or solenoids. Without the diode, a large voltage spike can occur
across the inductive load when its supply current is suddenly shut off, potentially
damaging the FET switch inside the DNx-MF-102. The anti-kickback diode
provides an alternate path for the current and clamps the voltage spike to a safe
value.
The diode in Push Mode or Pull Mode can be a general purpose diode rated to
handle the steady-state current through the inductor and the desired switching
speed. Connect the Push Mode or Pull Mode diode parallel to the load.
In Push-Pull Mode, we suggest using a bidirectional transient-voltage-
suppression (TVS) diode such as the P6KE68CA. Connect the TVS diode from
the FET line to Gnd.

DNx-MF-102 Multifunction I/O Board
Chapter 2 35

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 2-18 Industrial Digital Output Wiring

2.8.3 Serial Port
Wiring

The DNx-MF-102 may be wired according to either RS-232, RS-422, or RS-485
standards.

2.8.3.1 RS-232 In Figure 2-19, the DNx-MF-102 is wired to an external RS-232 device with
optional CTS and RTS lines for flow control. All lines are measured relative to
Gnd.

Figure 2-19 RS-232 Wiring

a.) Push Mode b.) Pull Mode

c.) Push-Pull Mode (H-Bridge Configuration)

DNx-MF-102 Multifunction I/O Board
Chapter 2 36

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.8.3.2 RS-422/485
Full Duplex

In Figure 2-20, the board is connected as a master in a RS-485 full duplex
network. This configuration is also compatible with RS-422. Because signals are
measured differentially, the + and - wires are twisted together (e.g., Rx+ and
Rx-) so that noise affects the pair equally. The far ends of the cables typically
require a termination resistor, shown as 120 Ω resistors in Figure 2-20.
Otherwise, signal reflections off of the unterminated ends could interfere with the
incoming signal and corrupt the data. The DNx-MF-102 provides an on-chip
91 Ω terminator that can be enabled for RS-422/485 modes.
As usual, Gnd should be connected to the reference of each external device.

Figure 2-20 RS-422 and RS-485 Full Duplex Wiring

2.8.3.3 RS-485 Half
Duplex

Figure 2-21 shows the wiring for a RS-485 half-duplex network. In RS-485 half-
duplex mode, the Rx+ and Rx- pins on the DNx-MF-102 are left open because
Tx and Rx are connected internally. If an external device on the network does
not have an internal Tx/Rx connection, Tx+ should be wired to Rx+ and Tx-
wired to Rx-. This external Tx/Rx wiring is not required on the DNx-MF-102. As
with full-duplex mode, the wire pair should be twisted together and termination
resistors added as needed.

Figure 2-21 RS-485 Half Duplex Wiring

DNx-MF-102 Multifunction I/O Board
Chapter 2 37

I/O Functional Descriptions

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2.8.4 CAN Bus
Wiring

As shown in Figure 2-22, the ISO 11898 bus consists of two wires, terminated at
both ends by resistors.
CAN devices (nodes) connect their CAN_L and CAN_H lines to the two-wire
CAN bus. A node transmits by sending the signal (HIGH or LOW) on CAN_H
and the inverse of the signal on CAN_L. Only the two nodes at each the end of
the bus must have a terminating resistor (100-130 Ω). The terminating resistors
remove signal reflection at the end of the bus and balance the DC voltage levels.

Figure 2-22 CAN Nodes Connected to a CAN Bus using Standard
120 Ω Termination

The bus cable length should not exceed 40 m (131 ft) at 1 Mbps, or 1000 m
(3280 ft) at 50 kbps due to the cable propagation delay (5 ns/m).
For cables longer than 1 m (3.28 ft), noise may cause timeouts when using
non-twisted-pair cabling; if you experience difficulty, use twisted-pair cabling.

12
0

oh
m

12
0

oh
m

Layer Controller

CAN Interface Controller

CAN Transceiver

Node Node

CAN_LCAN_LCAN_L CAN_H CAN_H CAN_H

RxTx optical
isolation

CAN bus

DNx-MF-102 Multifunction I/O Board
Chapter 3 38

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Chapter 3 PowerDNA Explorer

This chapter provides the following information about exploring the DNx-MF-102
with the PowerDNA Explorer application.

• Introduction (Section 3.1)

• Analog Input (Section 3.2)

• Analog Output (Section 3.3)

• Industrial Digital Input (Section 3.4)

• Industrial Digital Output (Section 3.5)

• RS-232/422/485 Port (Section 3.6)

• CAN Port (Section 3.7)

• Counter/Timer (Section 3.8)

• Logic-Level DIO (Section 3.9)

3.1 Introduction PowerDNA Explorer is a GUI-based application for communicating with your
RACK or Cube system. You can use it to start exploring a system and individual
boards in the system. PowerDNA Explorer can be launched from the Windows
startup menu:
Start » All Programs » UEI » PowerDNA » PowerDNA Explorer

The DNx-MF-102 is supported in PowerDNA version 5.2.0.11+.

When using PowerDNA Explorer to configure DNx-MF-102 boards, resetting the
IOM or changing the DNx-MF-102 configuration outside of PowerDNA Explorer
(e.g., via C code or Labview) is not recommended; PowerDNA Explorer will not
display changed parameters until Scan Network or Reload Configuration is
clicked again (see Figure 3-1 below for button locations).

DNx-MF-102 Multifunction I/O Board
Chapter 3 39

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-1 PowerDNA Explorer for DNx-MF-102

When the DNx-MF-102 is selected in the left-hand panel, the right-hand panel
contains a tab for each subsystem:

• AI: read analog inputs

• AO: configure analog outputs and read diagnostic ADCs

• DI: read digital inputs and diagnostic ADCs

• DO: configure industrial digital outputs, including PWM

• Serial: send and receive RS-232/422/485 messages

• CT: configure counter/timer sources and counting modes

• TTL: configure TTL digital outputs and read input port

• CAN: send or receive data over the CAN ports

NOTE: PowerDNA Explorer only supports basic DNx-MF-102 functionality, and
only one subsystem can be active at any given time. Refer to Chapter 4,
“Programming with High-level API” or Chapter 5, “Programming with
Low-level API” in order to access additional features and to use multiple
subsystems simultaneously.

DNx-MF-102 Multifunction I/O Board
Chapter 3 40

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.2 Analog Input To explore the analog input subsystem, select the AI tab (Figure 3-2) and click
the Enable Analog Input button.

3.2.1 Configure AI
Subsystem

The following settings apply to all 16 analog input channels:
• Input Range: programs the gain and voltage divider to achieve the

selected range (refer to Table 4-2).

• Moving Average: sets the number of samples used for the moving
average. You must store the configuration for the new moving average
to take effect. To save the configuration, click Store Configuration.

• Use Differential Mode for All Channels: configures all channels to
differential mode.

3.2.2 Read AI Data To start data acquisition, click the Read Input Data button. The channel table
contains the following columns:

• AInX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Differential: sets a channel pair to differential mode. As shown in
Figure 3-2, only the checkboxes corresponding to the even numbered
analog input channels can be selected. When the Differential checkbox
for an even numbered channel is selected, the Value field for the
corresponding odd numbered channel is cleared.

• Value: displays the analog input data in volts. This field is cleared for
odd numbered channels when the corresponding even numbered
channel has its Differential checkbox selected.

NOTE: If the range is set to [-10, 10], [-2.5, 2.5], [-0.625, 0.625], or [-0.15625,
0.15625] (i.e., divider is disabled), ensure that all unused AIn pins are
wired to AGnd.

DNx-MF-102 Multifunction I/O Board
Chapter 3 41

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-2 PowerDNA Explorer AI Tab

DNx-MF-102 Multifunction I/O Board
Chapter 3 42

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.3 Analog
Output

To explore the analog output subsystem, select the AO tab and click the Enable
Analog Output button.

3.3.1 Write AO Data The AO Output subtab (Figure 3-3) contains the following:
• Output Range: sets the voltage or current range for both channels.

When you select a new range, the output value automatically
reconfigures to midrange.

• AOutX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Value: slider and numeric text field for setting the voltage or current of
the corresponding output channel. The valid value range is shown in the
Output Range display. The output value is written instantaneously
when the slider is released or after pressing Enter in the numeric field.

Figure 3-3 PowerDNA Explorer AO Tab, Output Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 43

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.3.2 Read AO
Guardian
Diagnostics

The AO Guardian subtab (Figure 3-4) provides access to diagnostic ADC data
for both output channels. To read the Guardian diagnostic values, click the Read
Input Data button.
The Guardian subtab contains the following columns:

• AInX: read-only display of the analog output channel number.

• Name: a name or note that you wish to give to the channel.

• Temp (C): DAC temperature

• Vsense+ (V): Voltage on AOutX

• Vsense- (V): Voltage on AGndX

• Vdpc+ (V): Supply voltage

Figure 3-4 PowerDNA Explorer AO Tab, Guardian Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 44

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.4 Industrial
Digital Input

To explore the industrial digital input subsystem, open the DI tab (Figure 3-5)
and click the Enable Digital Input button.
Click Read Input Data to start data acquisition.
The DI tab contains the following settings and displays:

• 0 Level: slider and numeric text field for setting the logic level low
threshold (between 0 to 55 V). The logic level changes from 1 to 0 when
the input voltage transitions below the 0 Level. Click Store
Configuration for the changes to take effect.

• 1 Level: Slider and numeric text field for setting the logic level high
threshold (between 0 to 55 V). The logic level changes from 0 to 1 when
the input voltage transitions above the 1 Level. Click Store
Configuration for the changes to take effect.

• DInX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Guardian: displays the voltage data from the channel’s ADC.

• State: displays the current state of the channel. This state is determined
by comparing the ADC voltage to the configured 0 Level and 1 Level.

• State Debounced: displays the debounced state of the channel. This
logic level must have held steady over the number of samples defined in
the “Debouncer” column. Click Store Configuration for the changes to
take effect.

• Debouncer: numeric text field to set the debouncing interval for the
channel. This is the number of ADC samples required for a debounced
state change (max 65535).

DNx-MF-102 Multifunction I/O Board
Chapter 3 45

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-5 PowerDNA Explorer DI Tab

DNx-MF-102 Multifunction I/O Board
Chapter 3 46

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.5 Industrial
Digital Output

To explore the industrial digital output subsystem, open the DO tab and click the
Enable Digital Output button.

3.5.1 Configure
PWM

The DO PWM subtab (Figure 3-6) configures the following output channel
properties:

• PWM Period: the period of the pulse-width modulated output in
microseconds. Type in a number between 5 and 254,200, press the
Enter key, and click the Store Configuration button.

• DOutX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Mode: one of the following PWM modes:
• PWM Disabled: disables PWM on the output channel
• PWM Output: enables PWM on the output channel
• Soft-Start: When Output is switched from LOW to HIGH, the duty

cycle gradually increases from 0% to the percentage specified in the
Duty Cycle column over the specified Duration.

• Soft-Stop: When Output is switched from HIGH to LOW, the duty cycle
gradually decreases from the percentage specified in the Duty Cycle
column to 0% over the specified Duration.

• Push/Pull: one of the following modes:
• Off: No push-pull setting
• Push: act as sourcing switch
• Pull: act as sinking switch
• Push-pull: connect as both push and pull, but never at same time

(circuit shown in Figure 2-18c)
• Duty Cycle (%): Defines the duty cycle for “PWM Output” mode and the

soft start and soft stop modes.

• Duration (ms): Defines the duration of the full “Soft-Start” or “Soft-Stop”
cycle in milliseconds. This duration should be set longer than the PWM
period.

DNx-MF-102 Multifunction I/O Board
Chapter 3 47

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-6 PowerDNA Explorer DO Tab, PWM Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 48

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.5.2 Write to Digital
Output

The DO Output subtab (Figure 3-7) contains the following columns:
• Ch X: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• High: sets the output state to 1 (high-side FET turned on, low-side FET
turned off)

• Low: sets the output state to 0 (high-side FET turned off, low-side FET
turned on)

• Tri: configures the channel as input-only (both FETs turned off)
.

Figure 3-7 PowerDNA Explorer DO Tab, Output Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 49

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.6 RS-232/422/
485 Port

To explore the RS-232/422/485 subsystem, open the serial tab and click Enable
Serial.

3.6.1 Configure
Serial Port

The Configuration subtab (Figure 3-8) contains the following settings:
• Mode: Configures the port mode to RS-232, RS-485 Full Duplex

(compatible with RS-422), or RS-485 Half Duplex.

• Baud: Sets the baud rate in bits per second (bps). The minimum
supported value is 300 bps. RS-232 mode supports rates up to 256
kbps, while RS-422/485 mode supports rates up to 2 Mbps.

• Parity: Sets the parity bit to None, Even Parity, or Odd Parity.

• Data Bits: Sets the number of data bits transferred with each frame.

• Stop Bits: Sets the number of STOP bits.

• Break Enabled: Holds the TX line at logic low.

• Loopback Enabled: Connects RX and TX internally and disables
external signals.

• Timeout: Defines the timeout period in milliseconds when no data is
seen on the RX line

• Terminate Messages By String: A Read stops after this string has
been found.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware.
Click the Start Bus button to enable the serial port.

NOTE: If you change the port configuration, new settings do not take effect until
you stop and restart the bus.

DNx-MF-102 Multifunction I/O Board
Chapter 3 50

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-8 PowerDNA Explorer Serial Tab, Configuration Subtab

3.6.2 Send/Receive
Data

The Send/Receive subtab (Figure 3-9) sends/receives either ASCII or Hex
characters, as selected in the “Format” dropdown menu.

• To Send Data: Type either an ASCII string or Hex characters (separated
by a space) into the text field next to the Send button. Click Send to
write the data to the TX FIFO.

• To Receive Data: The “Bytes Requested” field sets the number of bytes
to request from the RX FIFO. This value takes effect immediately. Click
Read Input Data and view the received messages in the display. If the
RX FIFO has less data than requested, or if the termination string is
encountered, the returned message will be filled in with 0x00. The Clear
button clears the message display.

Figure 3-9 shows the results of a simple loopback test. In this example,
Loopback is enabled, three bytes of data are written to the TX FIFO, and two
bytes of data are requested from the RX FIFO per read.

DNx-MF-102 Multifunction I/O Board
Chapter 3 51

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-9 PowerDNA Explorer Serial Tab, Send/Receive Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 52

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.7 CAN Port To explore the CAN subsystem, open the CAN tab and click Enable CAN.

3.7.1 Configure
CAN Port

The Configuration subtab (Figure 3-10) contains the following settings for each
of the DNx-MF-102 CAN ports:

• Speed: Sets the data transfer rate in kilobits per second (kbps). The
minimum supported rate is 50 kbps. The maximum is 1 Mbps.

• Mode: Configures the CAN port mode to use Basic frames with 11-bit
identifiers or Extended frames with 29-bit identifiers.

• Accept Mask: Sets a mask for filtering frames by applying the mask to
the frame’s identifier. Each bit in the mask indicates if the corresponding
bit in the identifier is relevant (0) or not relevant (1). The Accept Mask is
used in conjunction with the Accept Code. Note that in Basic Mode, the
8-bit Accept Mask is applied to the 8 most significant bits of the 11-bit
identifier. The 3 least significant bits are not filtered in Basic Mode.

• Accept Code: The relevant Accept Code bits (as specified in the Accept
Mask) are compared to the corresponding bits in the frame’s identifier.
The frame is accepted if the relevant bits match. In Basic mode, the
comparison only applies to the 8 most significant bits of the 11-bit
identifier.

• Listen only: Configures the port as a passive CAN monitor. There is no
acknowledgment of incoming frames. Listen Only is only supported in
extended mode.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware.
Click the Start Bus button to enable the CAN port.

NOTE: If you change the port configuration, new settings do not take effect until
you stop and restart the bus.

DNx-MF-102 Multifunction I/O Board
Chapter 3 53

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-10 PowerDNA Explorer CAN Tab, Configuration Subtab

3.7.2 Send/Receive
Data

The Send/Receive subtab (Figure 3-11) provides the ability to send hex
characters out the Sending Port and receive hex characters using the Monitor
Port.

• To Send Data: Enter a binary ID in the ID field and up to eight hex bytes
(separated by a space) in the Data field. Click Send to write the data to
the TX FIFO.

• To Receive Data: Click Read Input Data and view the received
messages in the display. If the received data contains less than eight
bytes, the returned message will be padded with 0x00 values. The Clear
button clears the message display.

DNx-MF-102 Multifunction I/O Board
Chapter 3 54

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Figure 3-11 shows the results of a simple loopback test. In this example, three
bytes of data are sent out the Sending Port. The received data is displayed in the
field for the Monitor Port with and padded as needed with 0x00.

Figure 3-11 PowerDNA Explorer CAN Tab, Send/Receive Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 55

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.8 Counter/
Timer

To explore the counter/timer modules, open the CT tab and click Enable
Counter/Timer.

3.8.1 Configure
Count Mode
and Sources

The DNx-MF-102 includes two independent counter/timer modules. Counter/
timer configuration and operation depends on the selected mode. PowerDNA
Explorer supports the following modes:

• Quadrature: counts pulses on the external Input. The count increases
or decreases depending on the Gate signal. (Section 3.8.2)

• Bin Counter: counts pulses on the external input over a 1 second
interval. (Section 3.8.3)

• PWM Output: generates a square wave on the Output. (Section 3.8.4)

• Frequency: measures the frequency of the external Input over a user-
configured time interval. (Section 3.8.5).

You can route the counter’s Gate, Input, and Output lines to any FET-based DIO
or TTL DIO source listed in the dropdown menu. Click Store Configuration to
program the source settings in hardware.

NOTE: When using FET-based sources as the Input or Gate, always configure
digital input levels on the DI tab (Section 3.4) and click Read Input Data
to enable the DI ADC.

DNx-MF-102 Multifunction I/O Board
Chapter 3 56

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.8.2 Quadrature
Mode

Quadrature Mode counts pulses on the Input Source. The count increases or
decreases depending on the Gate Source. Output Source is unused in this
mode.
The CT tab with Quadrature Mode settings is shown in Figure 3-12.
Click Store Configuration to write settings to hardware.
After you Start the counter, data is returned in the Relative Position field. This
represents the number of pulses on the Input Source in hexadecimal format.
Data starts from 0xffffffff and counts up if the value from Gate Source=1. The
data counts down if Gate Source=0.

Figure 3-12 PowerDNA Explorer CT Tab, Quadrature Mode

DNx-MF-102 Multifunction I/O Board
Chapter 3 57

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.8.3 Bin Counter
Mode

Bin Counter Mode counts pulses on the Input Source over a 1 second interval.
Output Source is unused in this mode.
The CT tab with Bin Counter Mode settings is shown in Figure 3-13.
Click Store Configuration to write settings to hardware.
After you Start the counter, data is returned in the following displays:

• Counter Value: number of pulses over 1 second time interval

Figure 3-13 PowerDNA Explorer CT Tab, Bin Counter Mode

3.8.4 PWM Output
Mode

PWM Output Mode generates a square wave on the Output Source. Gate and
Input Sources are unused in this mode.
The CT Tab with PWM Output Mode settings is shown in Figure 3-14. It includes
the following:

• Duty Cycle: Sets the duty cycle of the Output square wave.

• Output Frequency: Sets the desired frequency of the Output square
wave, between 1 and 10,000 Hz.

DNx-MF-102 Multifunction I/O Board
Chapter 3 58

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware.
After you Start the counter, PWM is output corresponding to the settings
applied.

NOTE: For FET-based digital outputs, it is easier to generate PWM signals
directly through the DO subsystem (Section 3.5).

Figure 3-14 PowerDNA Explorer CT Tab, PWM Output Mode

3.8.5 Frequency
Mode

Frequency Mode measures the frequency of the Input Source over a user-
configured time interval.The Output Source is unused in this mode.
The CT Tab with Frequency Mode settings is shown in Figure 3-15 It includes
the following:

• Measurement Period: Time interval for the frequency measurement,
between 1 and 32,537,631 microseconds.

DNx-MF-102 Multifunction I/O Board
Chapter 3 59

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Press the Enter key after typing numerical inputs and click Store Configuration
to write the settings to hardware.

After you Start the counter, data is returned in the following displays:
• Measured Frequency: measured Input frequency in Hz.

Figure 3-15 PowerDNA Explorer CT Tab, Frequency Mode

DNx-MF-102 Multifunction I/O Board
Chapter 3 60

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.9 Logic-Level
DIO

The DNx-MF-102 provides two dedicated channels for TTL input and two that
are dedicated for TTL output. To explore the TTL-level digital I/O subsystem,
open the TTL tab and click Enable TTL.

3.9.1 Read TTL
Inputs

Click the Read Input Data button to read the state of the two TTL input
channels. The TTL Input subtab (Figure 3-16) contains the following columns:

• TTLX: read-only display of the channel number.

• Name: a name that you wish to give to the channel.

• State: displays the logic state of the channel.

Figure 3-16 PowerDNA Explorer TTL Tab, Input Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 3 61

PowerDNA Explorer

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

3.9.2 Write TTL Data The TTL Output subtab (Figure 3-17) contains the following columns:
• TTLX: read-only display of the channel number.

• Name: a name that you wish to give to the channel.

• State: toggles the logic state of the TTL output channel.

Figure 3-17 PowerDNA Explorer TTL Tab, Output Subtab

DNx-MF-102 Multifunction I/O Board
Chapter 4 62

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Chapter 4 Programming with High-level API

This chapter provides the following information about programming the
DNx-MF-102 using the UeiDaq Framework API:

• About the High-level API (Section 4.1)

• Example Code (Section 4.2)

• Create a Session (Section 4.3)

• Assemble the Resource String (Section 4.4)

• Configure the Timing (Section 4.5)

• Start the Session (Section 4.6)

• Analog Input Session (Section 4.7)

• Analog Output Session (Section 4.8)

• Industrial Digital Input Session (Section 4.9)

• Industrial Digital Output Session (Section 4.10)

• TTL Digital Input Session (Section 4.11)

• TTL Digital Output Session (Section 4.12)

• Counter Input Session (Section 4.13)

• Counter Output Session (Section 4.14)

• Diagnostics Session (Section 4.15)

• Serial Port Session (Section 4.16)

• CAN Bus Port Session (Section 4.17)

• Stop the Session (Section 4.18)

4.1 About the
High-level API

The UeiDaq Framework is object oriented and its objects can be manipulated in
the same manner from different development environments, such as C++,
Python, MATLAB, LabVIEW, and more. The Framework is supported in
Windows 7 and up. It is generally simpler to use compared to the low-level API,
and it includes a generic simulation device to assist in software development.
Therefore, we recommend that Windows users use the Framework unless
unconventional functionality is required. Users programming for a non-Windows
operating system should instead use the low-level API (Chapter 5).

For more detail regarding the Framework’s architecture, please see the “UeiDaq
Framework User Manual” located under:

Start » All Programs » UEI

For information on the Framework’s classes, structures, and constants, please
see the “UeiDaq Framework Reference Manual” located under:

Start » All Programs » UEI

DNx-MF-102 Multifunction I/O Board
Chapter 4 63

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.2 Example
Code

UeiDaq Framework is bundled with examples for supported programming
languages. The example code is located under:

C:\Program FIles (x86)\UEI\Framework

The examples can be accessed via the Windows Start Menu. For example:

Start » All Programs » UEI » Visual C++ Examples

Unlike the low-level examples, Framework examples are board-agnostic, e.g.,
the “AnalogInBuffered” example works across all UEI analog input boards which
support the Advanced Circular Buffer (ACB) data acquisition mode.

Each high-level example follows the same basic structure listed in the following
steps. Subsystem configuration (Step 3) and reading and writing of data (Step 6)
are specific to particular subsystems so that information is presented in sections
that are tailored to that subsystem.

1. Create a session (Section 4.3).

2. Assemble the resource string (Section 4.4).

3. Configure the session for a particular device and subsystem
(Section 4.7 through Section 4.17).

4. Configure the timing (Section 4.5).

5. Start the session (Section 4.6).

6. Read or write data (Section 4.7 through Section 4.17).

7. Stop the session (Section 4.18).

This chapter presents examples using the C++ API, but the concepts are the
same no matter which programming language you use. The “UeiDaq
Framework User Manual” provides additional information about programming in
other languages.

4.3 Create a
Session

The session object manages all communications with the DNx-MF-102.
Therefore, the first step is always to create a new session.

NOTE: If you want to use multiple subsystems on the DNx-MF-102 (for example
simultaneous analog input and output), you will need to create a new
session for each subsystem. Therefore, example sessions for each
subsystem will be given unique names.

4.4 Assemble the
Resource
String

Each session is dedicated to a specific subsystem within the device. Framework
uses a resource string to link the session to the hardware. The resource string
syntax is similar to a web URL; it should not have any spaces and is case
insensitive.

“<device class>://<IP address>/<device number>/<subsystem><channel list>”

//create a session object

CUeiSession mySession;

DNx-MF-102 Multifunction I/O Board
Chapter 4 64

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

The components of a resource string are as follows:

• <device class> - By default, Framework examples open with a generic
simulated device. To use the DNx-MF-102, set the device class to
pdna.

• <IP address> - IP address of the IOM.

• <device number> - position of the DNx-MF-102 within the chassis,
relative to the other I/O boards.

• <subsystem> - one of the following DNx-MF-102 subsystems:
• Ai: analog input session (Section 4.7)
• Ao: analog output session to generate voltage and/or current

(Section 4.8)
• Di0: industrial digital input session to configure all 16 lines

(Section 4.9)
• Diline0: industrial digital input session to configure selected lines

(Section 4.9)
• Do0: industrial digital output session to configure all 16 lines

(Section 4.10)
• Doline0: industrial digital output session to configure selected lines

(Section 4.10)
• Di1: TTL digital input session (Section 4.11)
• Do1: TTL digital output session (Section 4.12)
• Ci: counter input session to count events or measure pulse width and

period (Section 4.13)
• Co: counter output session to generate pulses and pulse trains

(Section 4.14)
• Diag: diagnostic session to read from analog output and DIO ADCs

(Section 4.15)
• Com: serial port session to send/receive RS-232/422/485 data

(Section 4.16)
• CAN: session to send/receive CAN bus data (Section 4.17)

• <channel list> - desired lines or ports within the selected subsystem,
either as a comma-separated list of numbers or a range. If the
subsystem name ends in a number, separate the subsystem and
channel list with a forward slash.

Example 1

Here are two valid resource strings for selecting analog input lines 0,1,2,3 on
device 1 at IP address 192.168.100.2:

• “pdna://192.168.100.2/Dev1/Ai0,1,2,3”

• “pdna://192.168.100.2/Dev1/Ai0:3”

Example 2

The following resource string selects TTL digital input port 0 on device 1 at IP
address 192.168.100.2:

DNx-MF-102 Multifunction I/O Board
Chapter 4 65

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

• “pdna://192.168.100.2/Dev1/Di1/0”

Refer to Section 4.7 through Section 4.17 for details on configuring the different
types of subsystems.

4.5 Configure the
Timing

The UeiDaq Framework supports Point-by-Point data acquisition mode for all
DNx-MF-102 functions. AVMap mode is supported for analog inputs. See
Table 4-1. Additional modes are supported by the low-level API (Chapter 5).

Point-by-Point mode transfers one sample at a time to/from each configured
channel of the I/O board. The delay between samples is controlled by the host
application (e.g., by using a Sleep function), thus limiting the data transfer rate
to a maximum of 100 Hz. This mode is also known as immediate mode or simple
mode.

Point-by-Point mode uses Simple IO timing.

AVMap mode allows acquisition of a variable number of samples per configured
analog input channel instead of a single sample.

AVMap mode requires timing to be configured by calling
ConfigureTimingForAsyncVMapIO():

Configure each session in the application with the appropriate timing mode.

Table 4-1 DAQ Modes Supported by UeiDaq Framework

DAQ Mode AIn AOut DIn DOut TTL CT Serial CAN

Point-by-Point

Async

ACB

RtDMap

RtVMap

ADMap

AVMap

//configure session to use Point-by-Point DAQ mode

mySession.ConfigureTimingForSimpleIO();

//configure timing for AVMap DAQ mode
//use an internal clock, 50 Hz date rate into FIFO, digital edge is
//ignored for analog inputs, FIFO watermark of 100 scans, period is not
//used when watermark is used

aiSession.ConfigureTimingForAsyncVMapIO(UeiTimingClockSourceInternal,
 50.0, UeiDigitalEdgeRising, 100, 0);

DNx-MF-102 Multifunction I/O Board
Chapter 4 66

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.6 Start the
Session

After the session is configured, you can start the session manually:

If you don’t explicitly start the session, it will start automatically the first time you
try to transfer data.

//Start the session.

mySession.Start();

DNx-MF-102 Multifunction I/O Board
Chapter 4 67

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.7 Analog Input
Session

The session may be configured to access the analog input (Ai) subsystem.

4.7.1 Configure
Input
Channels

The CreateAIChannel() method adds a new channel for each analog input
specified in the resource string. Single-ended inputs are numbered 0...15 and
differential-ended inputs are numbered 0...7. It is possible to call
CreateAIChannel() multiple times to add channels with different gains or
input modes.

• resource - Resource string specifying the analog inputs to configure
(Section 4.7.1.1).

• min – specifies the minimum value in the range.

• max – specifies the maximum value in the range.

• mode – The input mode of the analog input(s).

4.7.1.1 Add Input
Channels

Add analog input channels as follows:

The min and max parameters in CreateAIChannel() configure the channel
gain. Table 4-2 shows the supported min/max values and their corresponding
gain settings. For example, setting [min, max] to either [-10, 10] or [-80, 80]
configures the gain to x1.

CUeiAIChannel* CreateAIChannel(std::string resource,
f64 min, f64 max, tUeiAIChannelInputMode mode);

//Configure ch[0:2] to read differential inputs 0, 1, and 2.
//Set gain to 1x (-10 V to 10 V range when voltage divider is disabled).

aiSession.CreateAIChannel(“pdna://192.168.100.2/Dev1/Ai0:2”,
-10, 10, UeiAIChannelInputModeDifferential);

//Configure ch[7:15] to read the remaining inputs in single-ended mode.

aiSession.CreateAIChannel(“pdna://192.168.100.2/Dev1/Ai7:15”,
-10, 10, UeiAIChannelInputModeSingleEnded);

Table 4-2 Analog Input Ranges (Volts)

Gain Without divider With divider

x1 [-10, 10] [-80, 80]

x4 [-2.5, 2.5] [-20, 20]

x8 [-0.625, 0.625] [-5,5]

x64 [-0.15625, 0.15625] [-1.25, 1.25]

DNx-MF-102 Multifunction I/O Board
Chapter 4 68

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

When reading input channels, saturation or clipping can occur if the gain is too
high, making the value appear stuck at the highest or lowest value. Try a lower
gain value, or begin with x1. If you accidentally create a channel with
unsupported values, the board will be programmed with the closest supported
gain.

NOTE: To use the input ranges in the “With divider” column, you must also
enable the voltage divider (see Section 4.7.1.2 below). Setting [min,
max] to [-80, 80], [-20, 20], [-5, 5], or [-1.25, 1.25] only programs the
gain; it does not automatically enable the divider.

4.7.1.2 Enable Voltage
Divider

When enabled, the voltage divider reduces the voltage on the channel by a
factor of 8. It is also a convenient way to tie unused input pins to ground, as is
required on the DNx-MF-102 (see Section 2.8.1.2). The divider is enabled/
disabled individually for each channel.

NOTE: Use the GetChannel() method to obtain a pointer to a channel,
rather than CUeiAIChannel* aichannel =
aiSession.CreateAIChannel(). CreateAIChannel() returns a
pointer to only the first channel in the list.

4.7.1.3 Add
Timestamp

Timestamp the data by adding a ts channel as the last channel in the resource
string: “pdna://192.168.100.2/Dev1/Ai0:2,ts”. The units will be in
seconds. Note that there are no spaces in a properly formatted resource string.

4.7.1.4 Configure
Moving
Average

Enabling the moving average can smooth out noise from the sensor input line.
The number of samples used for the moving average may be set to 0, 2, 4, 8,
16, 32, 64, 128, or 256. The default window size is 0 (turned off/average every
sample). Moving average samples are acquired at the analog input subsystem
clock rate (default 2 kHz).

//Enable voltage divider on every channel in the session.

for (int ch = 0; ch < aiSession.GetNumberOfChannels(), ch++)
{

CUeiAIChannel* aichannel =
dynamic_cast<CUeiAIChannel*>(aiSession.GetChannel(ch));

aichannel->EnableVoltageDivider(true);
}

//Set moving average window size to 128 samples.

aichannel->SetMovingAverageWindowSize(128);

DNx-MF-102 Multifunction I/O Board
Chapter 4 69

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.7.2 Read Data Reading data is done using a reader object. An Analog Raw Reader returns the
calibrated binary data and an Analog Scaled Reader returns the data converted
to volts. The following example code shows how to create a scaled reader object
and read input voltages.

//Create a reader object and link it to the session’s data stream.

CUeiAnalogScaledReader aiReader(aiSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[16];

//For point-to-point, read one sample per channel.

aiReader.ReadSingleScan(data);

//For AVMap, read available scans.

aiReader.ReadMultipleScans(100, data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 70

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.8 Analog
Output
Session

The session may be configured to access the analog output (Ao) subsystem.

4.8.1 Configure
Output
Channels

The two analog outputs on the DNx-MF-102 are independently configurable as
either voltage or current outputs. The CreateAOChannel() method adds a
new channel for each analog output specified in the resource string.

• resource - Resource string specifying the analog outputs to configure
(Section 4.8.1.1 and Section 4.8.1.2).

• min – specifies the minimum value you expect to generate.

• max – specifies the maximum value you expect to generate.

4.8.1.1 Voltage Output Use the CreateAOChannel() method to add a new voltage output channel to
the session. The channel is linked to the output line(s) specified in the resource
string.

Voltage output ranges (V):

• [-5, 5]

• [-10, 10]

If you accidentally create a channel with unsupported min or max values, the
board will be programmed with the closest supported range.

4.8.1.2 Current
Output

Use the CreateAOCurrentChannel() method to add a new current output
channel.

Current output ranges (mA):

• [0, 20]

• [4, 20]

• [-1, 22]

CUeiAOChannel* CreateAOChannel(std::string resource, f64 min, f64 max);

//Configure ch[0] to output voltage on AOut 0 in the -10V to 10V range.

aoSession.CreateAOChannel(“pdna://192.168.100.2/Dev1/Ao0”, -10, 10);

//Configure ch[1] to output current on AOut 1 in the 4mA to 20mA range.

aoSession.CreateAOCurrentChannel(“pdna://192.168.100.2/Dev1/Ao1”,
4, 20);

DNx-MF-102 Multifunction I/O Board
Chapter 4 71

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.8.2 Write Data Writing data is done using a writer object. An Analog Raw Writer sends binary
data straight to the D/A converter. An Analog Scaled Writer accepts data in units
of volts or milliamps, depending on the channel configuration, and automatically
converts the scaled data to binary.

The following example code shows how to create a scaled writer object and
write a single set of data. Assume both channels are configured for voltage
output in the ± 10V range.

NOTE: The DNx-MF-102 does not support the CreateAOWaveform() method.
Instead, you must manually generate waveform data and load it into the
data buffer.

4.8.3 Read
Diagnostic
Data

You can read temperature and voltage from the analog output ADCs through a
separate Diagnostic session (Section 4.15).

//Create a writer object and link it to the session’s data stream.

CUeiAnalogScaledWriter aoWriter(aoSession.GetDataStream());

//Buffer contains one value per channel.

double data[2] = {-2.5, 7.5};

//Write -2.5V to ch[0] and 7.5V to ch[1]

aoWriter.WriteSingleScan(data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 72

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.9 Industrial
Digital Input
Session

The session may be configured to access the industrial digital input (Di0 or
Diline0) subsystem.

4.9.1 Configure
Input
Channels

The CreateDIIndustrialChannel() method adds FET-based digital input
channels, sets their hysteresis thresholds, and programs a debouncer to
eliminate glitches and spikes.

NOTE: When configuring DNx-MF-102 channels as both industrial digital inputs
and industrial digital outputs, the inputs must be configured before the outputs.

• resource - Resource string specifying the port (Section 4.9.1.1) or
the line (Section 4.9.1.2)

• lowThreshold – Logic level changes from 1 to 0 when the input
voltage falls below the low hysteresis threshold.*

• highThreshold – Logic level changes from 0 to 1 when the input
voltage rises above the high hysteresis threshold.*

• minPulseWidth – Debouncer only allows a state change when the
input has remained stable at the new level for this number of
milliseconds. Use 0.0 to disable the debouncer. The maximum
allowable value for minPulseWidth width is 327 ms. If a larger value is
passed to this method, a value of 327 ms will be used.

*If the signal is in between the low and high thresholds, the detector maintains
the previous logic level.

4.9.1.1 Adding a Port Using Di0 in the resource string adds the entire digital input port to one
channel.

You can reconfigure individual lines using methods in the
CUeiDIIndustrialChannel class.

CUeiDIIndustrialChannel* CreateDIIndustrialChannel(std::string resource,
double lowThreshold, double highThreshold, double minPulseWidth);

//Get pointer to input port (channel index = 0) and configure DIO0:15
//with low threshold=2.0 V, high threshold=3.0 V, and
//debouncing interval=1.0 ms.

CUeiDIIndustrialChannel* diPort = diSession.CreateDIIndustrialChannel
 (“pdna://192.168.100.2/Dev1/Di0”,
 2.0, 3.0, 1.0);

//Change DIO7 configuration to low threshold=1.5 V, high threshold=3.5 V,
//and debouncing interval=2.0 ms.

diPort->SetLowThreshold(7, 1.5);
diPort->SetHighThreshold(7, 3.5);
diPort->SetMinimumPulseWidth(7, 2.0);

DNx-MF-102 Multifunction I/O Board
Chapter 4 73

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.9.1.2 Adding
Selected Lines

Alternatively, you can configure a subset of lines by specifying Diline0 in the
resource string and appending the desired line numbers. Note that all digital
input channels should be initially configured in a single call to
CreateDIIndustrialChannel().
Calling CreateDIIndustrialChannel() multiple times on the same session
will result in only the channels in the final call being added to the session.

This will create a number of CUeiDIIndustrialChannel instances equal to
the number of specified digital input lines. Per-channel configuration can then be
performed on the channels. The order of channels is the same order in which the
channels appeared in the resource string. Note that the <line> parameter
when setting channel parameters is always 0 when using the "DiLine" session
type. The following example sets the low threshold for each of the digital input
lines specified in the resource string above.

4.9.2 Read Data Reading data is done using a Digital Reader object. This is created using the
session's data stream object.
Digital data is stored in a 16-bit integer buffer. The reader reads from all lines in
the port, even if Diline configured only a subset of lines.

//Configure DIO2:3 and DIO7:10, initially with the same hysteresis
//thresholds debounce interval.

CUeiDIIndustrialChannel* diLines = diSession.CreateDIIndustrialChannel
(“pdna://192.168.100.2/Dev1/Diline0/2:3,7:10”, 2.0, 3.0, 1.0);

//Set channel index 0 (line 2 in the resource string) low threshold to 0 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(0))->SetLowThreshold(0, 0.0);

// Set channel index 1 (line 3 in the resource string) low threshold to 1 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(1))->SetLowThreshold(0, 1.0);

// Set channel index 2 (line 7 in the resource string) low threshold to 2 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(2))->SetLowThreshold(0, 2.0);

// Set channel index 3 (line 8 in the resource string) low threshold to 3 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(3))->SetLowThreshold(0, 3.0);

// Set channel index 4 (line 9 in the resource string) low threshold to 4 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(4))->SetLowThreshold(0, 4.0);

// Set channel index 5 (line 10 in the resource string) low threshold to 5 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(5))->SetLowThreshold(0, 5.0);

//Create a reader object and link it to the session’s data stream.

CUeiDigitalReader diReader(diSession.GetDataStream());

DNx-MF-102 Multifunction I/O Board
Chapter 4 74

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.9.2.1 Read DI Port When reading industrial digital input data from a Di0 session, use uInt16 data.
A single uInt16 will be returned with the low/high debounced status mask of all
16 channels.

4.9.2.2 Read Specific
DI Lines

When reading industrial digital input data from a Diline0 session, use uInt16
data. A number of uInt16 values will be returned that will be equal to the
number of configured channels. Only bit 0 of each 16-bit value should be used
(0 is low, 1 is high) .

NOTE: If you are simultaneously running a digital output session, ensure that
the output mask is disabled for the input-only lines. Otherwise, the
reader will return the values written to the port.

4.9.3 Read Input
Voltages

You can read voltage from the DIO ADCs by creating a separate Diagnostic
session (Section 4.15).

4.10 Industrial
Digital Output
Session

The session may be configured to access the industrial digital output (Do0 or
Doline0) subsystem. Because sessions are unidirectional, you will need a
dedicated output session even though output and input share the same physical
port.

4.10.1 Configure
Output
Channels

The CreateDOIndustrialChannel() method adds FET-based digital
output channels and configures PWM on those channels.

NOTE: When configuring DNx-MF-102 channels as both industrial digital inputs
and industrial digital outputs, the inputs must be configured before the outputs.

• resource - Resource string specifying the port (Section 4.10.1.1) or
the line (Section 4.10.1.2)

• pwmMode – Type of pulse train to output (Section 4.10.1.4)

• pwmLengthUs – Total duration of soft start and/or soft stop pulse train
in microseconds; ignored in other PWM modes

• pwmPeriodUs – Period in microseconds; min 5 µs, max 254200 µs

• pwmDutyCycle – Duty cycle between 0.0 and 1.0

//Read state of DIO0:15

uInt16 data;
diReader.ReadSingleScan(&data);

//Read state of DIO0:15

uInt16* digitalState = new uInt16[diSession.GetNumberOfChannels()];
diReader.ReadSingleScan(digitalState);

CUeiDOIndustrialChannel* CreateDOIndustrialChannel(std::string resource,
tUeiDOPWMMode pwmMode, uInt32 pwmLengthUs, uInt32 pwmPeriodUs,
double pwmDutyCycle);

DNx-MF-102 Multifunction I/O Board
Chapter 4 75

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.10.1.1 Add a Port Using Do0 in the resource string adds the entire digital output port to one
channel.

All outputs in the channel are enabled by default. You can selectively enable/
disable outputs with a 16-bit output mask (LSB is DIO0).

NOTE: If you are simultaneously running a digital input session, ensure that the
output mask is disabled (i.e., set to 0) for the input-only channels.

PWM features are configurable on a line-by-line basis.

4.10.1.2 Add Selected
Lines

Alternatively, you can configure a subset of lines by specifying Doline0 in the
resource string and appending the desired line numbers.

This approach creates one channel per line. Unlike a Do0 line, each Doline is
reconfigured using a unique channel index as follows:

//Configure DIO0:15 for output with no PWM. The last 3 parameters are
//ignored when PWM is disabled.

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Do0”,
UeiDOPWMDisabled, 0, 0, 0);

//Get pointer to output port (channel index = 0)

CUeiDOIndustrialChannel* doPort =
dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(0));

//Enables output on DIO0:7. DIO8:15 are configured as input-only.

doPort->SetOutputMask(0xff);

//Configure DIO1 for a soft start; period = 80us and duration = 2000us

doPort->SetPWMMode(1, UeiDOPWMSoftStart);
doPort->SetPWMPeriod(1, 80);
doPort->SetPWMLength(1, 2000);

//Configure DIO2:3 and DIO4:7 with 25% and 50% duty cycles respectively.

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Doline0/
2:3”, UeiDOPWMContinuous, 1000, 50, 0.25);

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Doline0/
4:7”, UeiDOPWMContinuous, 1000, 50, 0.5);

//Get pointer to DIO4. DIO4 is ch3 in the list created above.

CUeiDOIndustrialChannel* dochannel =
dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(3));

//Set DIO3 period to 200 us (pass in 0 for the line parameter)

dochannel->SetPWMPeriod(0, 200);

DNx-MF-102 Multifunction I/O Board
Chapter 4 76

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

However, even if you configured only a subset of lines, the output mask applies
to all 16 lines. You can use the same output mask code shown in
Section 4.10.1.1. It does not matter which channel calls SetOutputMask().

4.10.1.3 Configure
Pull-up/down
Resistors

You can connect a DIO line to Vcc and/or Gnd (Figure 2-4).

• UeiDigitalTerminationNone - no termination

• UeiDigitalTerminationPullUp - enable only pull-up resistor

• UeiDigitalTerminationPullDown - enable only pull-down resis-
tor

• UeiDigitalTerminationPullUpPullDown - enable both pull-up
and pull-down resistor

4.10.1.4 PWM Modes Choose one of the following options for the pwmMode input parameter:

• UeiDOPWMDisabled - disable PWM

• UeiDOPWMSoftStart - generate a pulse train after writing 1 if its
previous state was 0. The PWM duty cycle gradually increases from 0%
to pwmDutyCycle over pwmLengthUs.

• UeiDOPWMSoftStop - generate a pulse train after writing 0 if its
previous state was 1. The PWM duty cycle gradually decreases from
pwmDutyCycle to 0% over pwmLengthUs.

• UeiDOPWMSoftBoth - generate a pulse train for both a low-to-high
and high-to-low transition.

• UeiDOPWMContinuous - continuously generates a pulse train with
pwmDutyCycle. When writing to digital outputs, ensure that a 1 is
written to any output that is configured for UeiDOPWMContinuous
mode.

• UeiDOPWMGated - generates a pulse train with pwmDutyCycle only
when a 1 is written to the output.

4.10.1.5 Configure
PWM Push/
Pull

You can specify which FETs are switched by the PWM output:

• UeiDOPWMOutputPush - switch only high-side FET

• UeiDOPWMOutputPull - switch only low-side FET

• UeiDOPWMOutputPushPull - switch both FETs

• UeiDOPWMOutputOff - no PWM applied to either FET

//Connect pull-up resistor between DIO1 and Vcc.

doPort->SetTermination(1, UeiDigitalTerminationPullUp);

//Enable PWM on only high-side FET of DIO1.

doPort->SetPWMOutputMode(1, UeiDOPWMOutputPush);

DNx-MF-102 Multifunction I/O Board
Chapter 4 77

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.10.2 Write Data Writing data is done using a a Digital Writer object. Digital data is written as a
16-bit integer. The writer updates all lines in the port, even if Doline configured
only a subset of lines. FET-based outputs should be enabled using
SetOutputMask(), else the data for those bits will be ignored.

4.10.3 Read Output
Voltages

You can monitor digital outputs using an analog input session, as described in
Section 4.9.3.

4.11 TTL Digital
Input Session

The session may be configured to access the TTL digital input (Di1) subsystem.

4.11.1 Configure
Input Port

The DNx-MF-102 has only one TTL input port, so the resource string should
specify port 0 as shown in the code snippet below. The TTL input port includes
both TTL lines. You cannot configure a TTL session to only access a subset of
lines as you can with an industrial digital input session.

4.11.2 Read Data Reading data is done using a Digital Reader object. Digital data is stored in a
16-bit integer buffer. Bits 0 and1 are TTL lines 0 and 1, respectively. The other
bits are currently reserved.

//Create a writer object and link it to the session’s data stream.

CUeiDigitalWriter doWriter(doSession.GetDataStream());

//Write a 1 on DIO15:8 and a 0 on DIO7:0.

uInt16 data = 0xff00;
doWriter.WriteSingleScan(&data);

//Configure session to read the TTL input port.

ttliSession.CreateDIChannel(“pdna://192.168.100.2/Dev1/Di1/0”);

//Create a reader object and link it to the session’s data stream.

CUeiDigitalReader diReader(ttliSession.GetDataStream());

//Read state of all lines in the port. A scan returns a 16-bit integer.

uInt16 data[1];
diReader.ReadSingleScan(data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 78

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.12 TTL Digital
Output
Session

The session may be configured to access the TTL digital output (Do1)
subsystem.

4.12.1 Configure
Output Port

The DNx-MF-102 has only one TTL output port, so the resource string should
specify port 0 as shown in the example below. The TTL output port includes both
TTL lines. Bits 0 and1 are TTL lines 0 and 1, respectively. The other bits are
ignored.

4.12.2 Write Data Writing data is done using a Digital Writer object. Digital data is written as a
16-bit integer: Bits 0 and 1 are TTL lines 0 and 1, respectively. The other bits are
currently reserved.

//Configure session to use the TTL output port.

ttloSession.CreateDOChannel(“pdna://192.168.100.2/Dev1/Do1/0”);

//Obtain pointer to the output channel (only one channel in this case).

CUeiDOChannel* dochannel =
dynamic_cast<CUeiDOChannel*>(ttloSession.GetChannel(0));

//Create a writer object and link it to the session’s data stream.

CUeiDigitalWriter doWriter(ttloSession.GetDataStream());

//Set TTL DOut 1 = 1 and TTL DOut 0 = 0.

uInt16 data = 0x02;
doWriter.WriteSingleScan(&data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 79

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.13 Counter Input
Session

The session may be configured to access the counter input (Ci) subsystem.

4.13.1 Add Input
Channels

The CreateCIChannel() method adds counter input channels and sets
basic configuration parameters.

• resource – Resource string for counter 0 or counter 1

• source – Set CLKIN to either the internal 66MHz clock or an external
input pin (Section 4.13.2)

• mode – Counting mode (Section 4.13.3)

• gate – Use either an external or a software gate to enable the counter

• divider – Prescaler divides source signal by this factor; default = 1

• inverted – TRUE to invert source signal

4.13.2 Route Counter
to DIO Pins

The counter’s CLKIN, GATE, and CLKOUT lines can be internally routed to the
following pins:

• fetX - Industrial DIO pins, e.g. “fet3” for DIO3

• ttlX - TTL DIO pins, e.g., “ttl1” for TTL1

xThe external CLKIN pin is only used when the counter is configured with
source = UeiCounterSourceInput. Similarly, the GATE pin is only used
when the counter is configured with gate = UeiCounterGateExternal.

CUeiCIChannel* CreateCIChannel(std::string resource,
tUeiCounterSource source, tUeiCounterMode mode,
tUeiCounterGate gate, Int32 divider, Int32 inverted);

//Configure counter 0 to count events on an external pin.
//An internal gate starts the count immediately.
//Source is divided by 2 and not inverted.

ciSession.CreateCIChannel(“pdna://192.168.100.2/Dev1/Ci0”,
UeiCounterSourceInput, UeiCounterModeCountEvents,
UeiCounterGateInternal, 2, false);

//Obtain pointer to the input channel (only one channel in this case).

CUeiCIChannel* counter =
dynamic_cast<CUeiCIChannel*>(ciSession.GetChannel(0));

//Route CLKIN to DIO5.
//Route GATE to DIO3.
//Route CLKOUT to TTL1.

counter->SetSourcePin(“fet5”);
counter->SetGatePin(“fet3”);
counter->SetOutputPins(“ttl1”);

DNx-MF-102 Multifunction I/O Board
Chapter 4 80

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

You can set up an optional input debouncer for CLKIN and GATE. The maximum
allowable value for the minimum pulse width is 7.94 ms. If a larger value is
passed to either of these methods, a value of 7.94 ms will be used.

For fetX inputs, you must also create a separate industrial digital input session
(Section 4.9). This configures and starts up the A/D converter.

You do not need a separate session for TTL-level inputs (ttlX), nor do you need
one for outputs. If you are simultaneously running a digital output session and
want to read in external inputs, remember to disable the output mask on input-
only lines. The counter session automatically overrides digital output session
settings on output lines.

NOTE: CLKOUT should always be routed to an external pin, even if the counter
is only used for input. CLKOUT remains high during a counter input
session.

4.13.3 Counter Input
Modes

Choose one of the following options for the mode parameter:

• UeiCounterModeCountEvents - Count pulses on an external pin,
or use as a timer by counting internal clock cycles

• UeiCounterModeBinCounting - Count pulses over a user
specified time interval (Section 4.13.3.1)

• UeiCounterModeMeasurePulseWidth - Count the number of
66 MHz clocks while the input signal is high

• UeiCounterModeMeasurePeriod - Count the number of 66 MHz
clocks over the specified number of periods (Section 4.13.3.2). The
number of clock ticks returned will actually have occurred over the
specified number of periods plus 1, e.g., if 10 periods are specified, then
the returned number of clock ticks will have occurred over 11 periods.

• UeiCounterModeTimedPeriodMeasurement - Measure the
average period over a user-specified time interval (Section 4.13.3.1);
period is returned as a number of 66 MHz clocks

//Allow state change only when inputs have stayed stable for 1.0 ms.

counter->SetMinimumSourcePulseWidth(1.0);
counter->SetMinimumGatePulseWidth(1.0);

//Create new session.

CUeiSession diSession;

//Configure session to read from FET-based digital inputs.
//Low threshold = 2.0 V, high threshold = 3.0 V,
//debouncer interval = 1.0 ms

diSession.CreateDIIndustrialChannel(“pdna://192.168.100.2/Dev1/Di0”,
2.0, 3.0, 1.0);

//Configure timing for Point by Point DAQ mode.

diSession.ConfigureTimingForSimpleIO();

DNx-MF-102 Multifunction I/O Board
Chapter 4 81

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

• UeiCounterModeQuadratureEncoder - Quadrature encoder
measurement; PWM signal on GATE controls the count direction

• UeiCounterModeDirectionCounter - Count up if GATE is high
and count down if GATE is low

4.13.3.1 Set Capture
Time Interval

The time interval for UeiCounterModeBinCounting and
UeiCounterModeTimedPeriodMeasurement is configured using the
session’s timing object.

4.13.3.2 Set Number of
Periods

In UeiCounterModeMeasurePeriod mode, the counter can be configured
to measure the total duration of N+1 periods.

The counter returns the previous measurement until the specified number of
periods have been counted again.

4.13.4 Read Count
Data

Reading data is done using a reader object. Digital data is stored in a 32-bit
integer buffer.

//Get pointer to session’s timing object.

CUeiTiming* ciTiming = ciSession.GetTiming();

//Set frequency to 0.5 Hz; count is returned every 2.0 sec.

ciTiming->SetScanClockRate(0.5);

//Update the counter when 11 (N+1) periods have elapsed.

counter->SetPeriodCount(10);

//Create a reader object and link it to the session’s data stream.

CUeiCounterReader ciReader(ciSession.GetDataStream());

//Read the current count value.

uInt32 data[1];
ciReader.ReadSingleScan(data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 82

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.14 Counter
Output
Session

The session may be configured to access the counter output (Co) subsystem.

4.14.1 Add Output
Channels

The CreateCOChannel() method adds counter output channels and
configures the shape of the output signal.

• resource – Resource string for counter 0 or counter 1

• source – Set CLKIN to either the internal 66 MHz clock or an external
input pin (Section 4.13.2)

• mode – Counting mode (Section 4.14.3)

• gate – Use either an external or a software gate to enable the counter

• tick1 – Number of counts for which output is low

• tick2 – Number of counts for which output is high

• divider – Prescaler divides source signal by this factor; default = 1

• inverted – TRUE to invert source signal

4.14.2 Route Counter
to DIO Pins

Refer to Section 4.13.2 and the methods in the CUeiCOChannel class.

4.14.3 Counter
Output Modes

Choose one of the following options for the mode parameter:

• UeiCounterModeGeneratePulse - Generate a single pulse

• UeiCounterModeGeneratePulseTrain - Generate a continuous
pulse train

• UeiCounterModePulseWidthModulation - Generate a pulse
width modulated waveform (same as GeneratePulseTrain)

CUeiCOChannel* CreateCOChannel(std::string resource,
tUeiCounterSource source, tUeiCounterMode mode,
tUeiCounterGate gate, uInt32 tick1, uInt32 tick2,
Int32 divider, Int32 inverted);

//Configure counter 0 to output pulse train
// (period=6 ms, duty cycle=75%).
//Count ticks of an undivided, non-inverted 66 MHz source clock.
//An internal gate starts the output immediately.

coSession.CreateCOChannel(“pdna://192.168.100.2/Dev1/Co0”,
UeiCounterSourceClock, UeiCounterModeGeneratePulseTrain,
UeiCounterGateInternal, 100000, 300000,
1, false)

DNx-MF-102 Multifunction I/O Board
Chapter 4 83

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.14.4 Write Output
Parameters

You can write new tick1 and tick2 values to the counter using a writer object.
This is used to change the PWM period and/or duty cycle after the session has
already been started.

//Create a writer object and link it to the session’s data stream.

CUeiCounterWriter coWriter(coSession.GetDataStream());

//Buffer must be large enough to contain two 32-bit integers per channel.

uInt32 data[2]={20000, 5000};

//Set tick1 = 20000 (low duration)
//Set tick2 = 5000 (high duration)

coWriter.WriteSingleScan(data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 84

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.15 Diagnostics
Session

The session may be configured to read diagnostic data from the Analog Output
and Industrial DIO subsystems.

4.15.1 Add Input
Channels

The CreateDiagnosticChannel() method adds the diagnostic channels
specified in the resource string. The Diag subsystem supports the channel
numbers listed in Table 4-3 plus a time stamp channel (Section 4.7.1.3).

To help keep track of the different channels in a session, you can retrieve an
abbreviated description of each channel with GetAliasName(). The following
example code returns the string ‘temp_aout1’ when used with the channel list
created above.

//Configure session to read all AOut1 diagnostics.

diagSession.CreateDiagnosticChannel(“pdna://192.168.100.2/Dev1/
Diag4:7”);

Table 4-3 Diagnostic Channel Numbers

Channel # Description

0 DAC temperature on AOut0

1 Voltage on AOut0

2 Voltage on AGnd0

3 DAC supply voltage on AOut0

4 DAC temperature on AOut1

5 Voltage on AOut1

6 Voltage on AGnd1

7 DAC supply voltage on AOut1

8 Voltage on DIO0

9 Voltage on DIO1

10 Voltage on DIO2

: :

22 Voltage on DIO14

23 Voltage on DIO15

//Retrieve name of first channel in the CreateDiagnosticChannel() list.

diagSession.GetChannel(0)->GetAliasName();

DNx-MF-102 Multifunction I/O Board
Chapter 4 85

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.15.2 Read Data Read diagnostic data the same way as you would in an analog input session. An
Analog Raw Reader object returns the calibrated binary data, while an Analog
Scaled Reader returns the data converted to °C or Volts. The following example
code reads scaled temperature and voltage from a session with four channels.

//Create a reader object and link it to the session’s data stream.

CUeiAnalogScaledReader diagReader(diagSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[4];

//Read one sample per channel.

diagReader.ReadSingleScan(data);

DNx-MF-102 Multifunction I/O Board
Chapter 4 86

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.16 Serial Port
Session

The session may be configured to access the RS-232/422/485 (Com)
subsystem. by using the CreateSerialPort() method to link the session to
the serial port (Port 0). Use the method to configure basic port settings and
obtain a pointer to the port.

• resource - Resource string specifying the device and port(s) to add to
the session.

• mode – serial port mode: RS-232, RS-485 half and full duplex.

• bitsPerSecond – number of bits transmitted per second over the
serial link.

• dataBits – number of data bits describing each character.

• parity – parity scheme used for transmission error detection.

• stopBits – number of stop bits used to indicate the end of a data
message

• termination – read operation terminates when the termination string
is read from the serial device.

4.16.1 Configure the
Port

The CreateSerialPort() method links the session to the serial port
(Port 0), configures basic port settings, and returns a pointer to the port.

You can configure additional DNx-MF-102 serial port settings by calling the
CUeiSerialPort methods summarized in Table 4-4. For example:

CUeiSerialPort* CreateSerialPort(std::string resource,
tUeiSerialPortMode mode,tUeiSerialPortSpeed bitsPerSecond,
tUeiSerialPortDataBits dataBits, tUeiSerialPortParity parity,
tUeiSerialPortStopBits stopBits, std::string termination);

//Configure session for RS-232 serial communications @57600 bps.
//Each UART frame has 8 data bits, no parity bit, and 1 stop bit.
//No termination string is set.

CUeiSerialPort* port = serialSession.CreateSerialPort(
“pdna://192.168.100.2/Dev1/Com0”,
UeiSerialModeRS232,
UeiSerialBitsPerSecond57600,
UeiSerialDataBits8,
UeiSerialParityNone,
UeiSerialStopBits1,
“”);

//Connect RX and TX signals internally and disable external signals.

port->EnableLoopback(TRUE);

DNx-MF-102 Multifunction I/O Board
Chapter 4 87

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Refer to the CUeiSerialPort class definition and/or the “UeiDaq Framework
Reference Manual” for more information about these functions and their
accepted input parameters.

Table 4-4 High-level API for Serial Port Configuration

Function Description

SetMode Set port to RS-232, RS-422, or RS-485 mode.

SetSpeed Select a predefined baud rate or enable a custom rate.

SetCustomSpeed Set a custom baud rate in bits per seconds.

SetDataBits Set the number of data bits transferred per character. Each character is
always stored as a byte in the FIFO.

SetParity Set the type of parity bit.

SetStopBits Set the number of stop bits.

EnableLoopback Connect RX and TX signals internally and disable external signals.

EnableErrorReporting Send a break, i.e. hold TX line at logic low. No errors are currently
reported.

EnableRxTerminationResistor Enable RS-485 termination resistor (91 Ω) between RX+ and RX-.

EnableTxTerminationResistor Enable RS-485 termination resistor (91 Ω) between TX+ and TX-.

SetCharDelay Set the delay between each character in microseconds.

SetMinorFrameMode Set how characters are grouped into minor frames (Section 4.16.1.2).

SetMinorFrameLength Set the number of characters in a minor frame (only used for fixed
length frame mode).

SetMinorFrameDelay Set the delay between minor frames in microseconds.

SetMajorFramePeriod Set the repeat period for a major frame in microseconds.

SetTermination

Set the termination string used to define the end of a message (max
128 characters). A READ command stops when the termination string
has been found.

NOTE: Setting the termination string is currently only supported
in low-level API. Framework support is under
development.

EnableHDEchoSuppression Stop RS-422 receiver from reading the transmitted characters.

SetFlowControl

Enable RS-232 hardware flow control.

NOTE: Setting the watermark level is currently only supported in
low-level API. Framework support is under development.

DNx-MF-102 Multifunction I/O Board
Chapter 4 88

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.16.1.1 Configure
Custom Baud
Rate

The following example shows how to program a custom port speed. See
Table 1-6 for the maximum supported speeds.

4.16.1.2 Configure
Minor Frames

The DNx-MF-102 supports three possible ways of defining a minor frame:

1. Fixed Length - each minor frame is a fixed number of characters. For
example:.

2. Zero Character - the end of a minor frame is indicated by an ASCII
NUL character (0x00). The zero character is transmitted when it’s the
last character in a WRITE command.

3. Variable Length - the size of each minor frame is indicated by an extra
character preceding the data characters. For example, if the write buffer
contains writeData={3, 0xa, 0xb, 0xc, 2, 0xd, 0xe}, the fol-
lowing sequence will be transmitted: 0xa, 0xb, 0xc, delay, 0xd, 0xe

4.16.1.3 Configure
Flow Control

The DNx-MF-102 only supports hardware flow control mode. Data transmission
stops when CTS is low, and RTS goes low when the RX FIFO reaches the RX
watermark level.

If the RX FIFO overflows when RTS Autoflow is enabled, the receiver stops
receiving data until a hard reset is performed.

4.16.2 Read Data Reading data from the RX FIFO is done using a reader object. The following
sample code requests 10 bytes from the RX FIFO and returns the number of
bytes actually read.

//Set baud rate to 15000 bits per second.

port->SetSpeed(SerialBitsPerSecondCustom);
port->SetCustomSpeed(15000);

//Insert a 1000us delay after every 20 characters.

port->SetMinorFrameMode(UeiSerialMinorFrameModeFixedLength);
port->SetMinorFrameLength(20);
port->SetMinorFrameDelay(1000);

//RX watermark is default 512 characters. Enable hardware flow control.

port->SetFlowControl(UeiSerialFlowControlRtsCts);

//Create a reader object and link it to the session’s data stream.

CUeiSerialReader serialReader(serialSession.GetDataStream());

//Data buffer must be large enough to contain the number of bytes read.

char readData[10];

//Read up to 10 bytes from the RX FIFO.

serialReader.Read(10, readData, &numBytesRead);

DNx-MF-102 Multifunction I/O Board
Chapter 4 89

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

The number of returned bytes may be less than the number of requested bytes
if the RX FIFO is short on data or if the termination string has been found. The
termination string can span across multiple READ commands. If one READ
command returns the beginning of the termination string, the next command will
watch for the remainder of the string.

4.16.3 Write Data Writing data to the TX FIFO is done using a writer object. The following example
commands a write of two bytes and returns the number of bytes actually written.

//Create a writer object and link it to the session’s data stream.

CUeiSerialWriter serialWriter(serialSession.GetDataStream());

//Load two bytes of data into buffer.

char writeData[2] = {0x53, 0x54};

//Write 0x53 and 0x54 to TX FIFO.
//If numBytesWritten==2, both bytes fit into the TX FIFO.

serialWriter.Write(2, writeData, &numBytesWritten);

DNx-MF-102 Multifunction I/O Board
Chapter 4 90

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.17 CAN Bus Port
Session

The session may be configured to access the CAN subsystem. This subsystem
is used to send data over a CAN bus.

4.17.1 Configure
CAN Port

The CreateCANPort() method adds one or both CAN ports and sets basic
configuration parameters.

• resource – Resource string for adding CAN port(s) to the session.

• bitsPerSecond – number of bits transmitted per second over the CAN
port.

• frameFormat – basic (11 bits ID) or extended (29 bits ID).

• mode – normal or passive.

• acceptanceMask – used to filter incoming frames. The mask selects
which bits within arbitration ID will be used for filtering.

• acceptanceCode – used to filter incoming frames. The arbitration ID
bits selected by the mask are compared to the code and the frame is
rejected if there is any difference.
For each bit, if (((ID==code) OR mask) == 1), then the frame is
accepted.

4.17.1.1 Transmit
Frame Auto
Format

When the frame format is set to Extended, and the TxFrameAutoFormat
property is set to true (the default value), the frame format will be automatically
selected based on the frame ID. Frames with IDs less than or equal to 0x7ff will
use 11-bit IDs while frames with IDs greater than or equal to 0x800 will use 29-bit
IDs.

The example in Section 4.17.1 creates two CUeiCANPort instances. Each CAN
port and its properties, e.g., TxFrameAutoFormat can then be configured or
accessed separately as shown in the following example.

CUeiCANPort* CreateCANPort(std::string resource,
tUeiCANPortSpeed bitsPerSecond, tUeiCANFrameFormat frameFormat,
tUeiCANPortMode mode, uInt32 acceptanceMask,
uInt32 acceptanceCode);

// Configure CAN ports 0 and 1 on device 0

CUeiCANPort* canPorts = canSession.CreateCANPort
 ("pdna://192.168.100.2/Dev0/Can0,1",

 UeiCANBitsPerSecond500K,
 UeiCANFrameExtended,
 UeiCANPortModeNormal,
 0xFFFFFFFF,
 0);

// Disable TxFrameAutoFormat for CAN port 0

((CUeiCANPort*)canSession.GetChannel(0))->EnableTransmitFrameAutoFormat(false);

DNx-MF-102 Multifunction I/O Board
Chapter 4 91

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.17.1.2 CAN Frame
Filtering

The SJA100 provides the capabilit to filter CAN frames. The most significant bits
of the acceptanceMask and acceptanceCode arguments of CreateCANPort
align with the MSBs of the corresponding registers described in Section 2.5.4.
There are two 8-bit registers for basic frame filtering.The 4-byte registers used
in extended frame filtering should be treated as single 32-bit registers. Setting
the acceptance mask to 0xFFFFFFFF and the acceptance code to 0 disables
filtering.
Filtering can also be done through software. A list of filter entry pairs is used to
configure the filtering. Each filter entry pair specifies the start and of a range of
frame IDs that will be accepted.

4.17.2 Read Data Reading data from the DNx-MF-102 CAN ports is done using a reader object. As
there is no multiplexing of data (contrary to what’s being done with AI, DI, or CI
sessions), you need to create one reader object per CAN port to be able to read
from each port in the port list.
The following example code shows how to create a reader object tied to port 1
and read at most 10 frames from the CAN bus.

// Add a software filter entry

tUeiCANFilterEntry entry;
entry.First = 0x100;
entry.Last = 0x200

((CUeiCANPort*)canSession.GetChannel(0))->AddFilterEntry(entry);

//Create a reader object and link it to the session’s data stream,
//port 1.

reader = CUeiCANReader(canSession.GetDataStream(), 1);

// read up to 10 CAN frames, numFramesRead contains the
// number of frames actually read.

tUeiCANFrame frames[10];
Int32 numFramesRead;
reader->Read(10, frames, &numFramesRead);

DNx-MF-102 Multifunction I/O Board
Chapter 4 92

Programming with High-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

4.17.3 Write Data Writing data to the DNx-MF-102 CAN ports is done using a writer object. As
there is no multiplexing of data (contrary to what’s being done with AO, DO, or
CO sessions), you need to create one writer object per CAN port to be able to
write to each port in the port list.
The following example code shows how to create a writer object tied to port 0
and send one frame to the CAN bus.

4.18 Stop the
Session

The session will automatically stop and clean itself up when the session object
goes out of scope or when it is destroyed. To manually stop the session:

To reuse the object with a different set of channels or parameters, you can
manually clean up the session as follows:

//Create a writer object and link it to the session’s data stream,
//port 0.

writer = CUeiCANWriter(canSession.GetDataStream(), 0);

//write 1 CAN frame

tUeiCANFrame frame;
Int32 numFramesWritten;

frame.Id = 0x10290;// Set the arbitration Id
frame.IsRemote = 0;// This is not a remote frame
frame.DataSize = 1;// Only send 1 byte in the payload
frame.Data[0] = 0x23;// Initializes the 1-byte payload

writer->Write(1, &frame, &numFramesWritten);

//Stop the session.

mySession.Stop();

//clean up session and free resources

mySession.CleanUp();

DNx-MF-102 Multifunction I/O Board
Chapter 5 93

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Chapter 5 Programming with Low-level API

This chapter provides the following information about programming the
DNx-MF-102 using low-level API:

• About the Low-level API (Section 5.1)

• Example Code (Section 5.2)

• Data Acquisition Modes (Section 5.3)

• Point-by-Point API (Section 5.4)

• Async Events API (Section 5.5)

• RtDMap API (Section 5.6)

• RtVMap API (Analog IO) (Section 5.7)

• RtVMap API (Serial) (Section 5.8)

• RtVMap API (CAN) (Section 5.9)

• AVMap API (Section 5.10)

5.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.
When programming in Windows OS, we recommend that you use the UeiDaq
high-level Framework API (see Chapter 4). The Framework simplifies the
low-level API, making programming easier and faster while still providing access
to the majority of low-level API features. Additionally the Framework supports a
variety of programming languages and the use of scientific software packages
such as LabVIEW and MATLAB.
For additional information regarding low-level programming, refer to the
“PowerDNA API Reference Manual” located in the following directories:

• On Linux: <PowerDNA-x.y.z>/docs

• On Windows: C:\Program Files (x86)\UEI\PowerDNA\Documentation

NOTE: The DNx-MF-102 is supported in PowerDNA version 5.2.0.11+. If you’re
unsure if your version supports the board please contact Technical
Support at uei.support@ametek.com.

The Low-level API uses macros (#defines) that are used for specifying a variety
of entities such as subsystems, voltage ranges, channel lists, gain settings, etc.
Macros formatted as DQ_MF102_ are specific to the DNx-MF-102 whereas
macros formatted as DQ_MF10X_ apply to any UEI DNx-MF-10x multifunction
board.

DNx-MF-102 Multifunction I/O Board
Chapter 5 94

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.2 Example
Code

Application developers are encouraged to explore the self-documented source
code examples to get started programming UEI products. The example code is
located in the following directories:

• On Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples

• On Windows:
C:\Program Files (x86)\UEI\PowerDNA\SDK\Examples\Visual C++

The I/O board number is embedded in the name of the example code. For
example, the Sample102 folder contains example code specific to the
DNx-MF-102. The example code should run out of the box after inputting the
IOM’s IP address and the board’s Device Number (DEVN).

5.3 Data
Acquisition
Modes

Table 5-1 lists the data acquisition (DAQ) modes available for transferring data
between the DNx-MF-102 and the low-level user application.

• Point-by-Point: Transfers one data point at a time to/from each
configured channel of a single I/O board. Timing is controlled by the
user application, which limits the transfer rate to 100 Hz. Point-by-Point
mode is also known as immediate mode or simple mode.

• Async: an event-driven mode used to acquire data on a specific
event,(e.g., digital I/O pin change of state, CAN events, return periodic
data at a user-defined rate). See Section 5.5.

• Real-Time Data Map (RtDMap): Transfers a packet containing one
data point for each channel in the user-defined map. The newest data is
transferred and old data is discarded. RtDMap is designed for closed-
loop (control) applications and may include channels across multiple I/O
boards.

• Real-Time Variable Map (RtVMap): Transfers a packet containing a
variable number of data points per channel. RtVMap buffers the data
and transfers the oldest data first. RtVMap is designed for closed-loop
(control) applications and may include channels across multiple I/O
boards.

Table 5-1 DAQ Modes Supported by the Low-Level API

DAQ Mode AIn AOut DIn DOut TTL CT Serial CAN

Point-by-Point

Async

RtDMap

RtVMap

ADMap

AVMap

ACB

DNx-MF-102 Multifunction I/O Board
Chapter 5 95

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

• Asynchronous Variable Map (AVMap): Transfers a packet containing
a variable number of data points per channel. AVMap buffers the data
and transfers the oldest data first. AVMap is designed for closed-loop
(control) applications and may include channels across multiple I/O
boards. With AVMap, a hardware condition, e.g., a timer countdown,
triggers data delivery.

ACB and ADMap are currently not supported on the DNx-MF-102.
Please refer to “FAQ - Data Acquisition Modes” for an overview and comparison
of all the different acquisition modes offered by UEI. The “PowerDNx Protocol
Manual” includes more detailed information about the protocols. Both of these
documents are located in the directories listed in Section 5.1.

NOTE: Multiple subsystems (AIn, AOut, etc.) may be used together as long as
they share the same DAQ mode. It is not possible to mix and match
multiple DAQ modes on a single IO board, e.g., Point-by-Point serial
messaging alongside VMap analog I/O.

5.3.1 Async Events
Mode

The DNx-MF-102 supports asynchronous event handling. This event-driven
mode runs in a separate thread alongside the selected DAQ mode. The
firmware sends an event packet when a specific event occurs. See Section 5.5
for a list of events that can be received from the DNx-MF-102.
You can call any of the DAQ mode functions upon receiving the event.

5.4 Point-by-
Point API

This section summarizes the low-level API used to configure, read from, and
write to the DNx-MF-102 in Point-by-Point DAQ mode. The functions and
parameters are described in detail in the “PowerDNA API Reference Manual”.
Please see Sample102 for a comprehensive example which includes typical
initialization, error handling, and usage of these functions. The example splits
the I/O subsystems into separate cases, making it easy to copy-paste different
subsystems into a true multifunction application.
The information in this section is intended as a supplement to the example code
and the API reference manual.
Note that much of the functionality provided by the DNx-MF-102 is identical to
functionality provided by UEI’s DNx-MF-101. Therefore, many DqAdv102____
functions are an alias to the corresponding DqAdv101____ function. For
example, calling DqAdv102AOReadAdc() actually invokes
DqAdv101AOReadAdc(). For CAN port support, functions may be aliased to
DNx-CAN-503 functions. Throughout this section, aliased functions are noted in
the following tables.

DNx-MF-102 Multifunction I/O Board
Chapter 5 96

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.1 Analog I/O Table 5-2 lists the low-level API functions for the DNx-MF-102 analog I/O
subsystem. See Sample102AnalogIn.c and Sample102AnalogOut.c for
example code.

5.4.2 Digital I/O Table 5-3 lists the low-level API functions for the DNx-MF-102 digital I/O
subsystems. See Sample102DigitalIn.c, Sample102DigitalOut.c, and
Sample102TTL.c for example code.

Table 5-2 Low-level Analog I/O API

Function Description

A
na

lo
g

 In
pu

t DqAdv102AIRead1 Return continuously sampled data from input channel.

DqAdv102AISetConfig1 Enable/disable voltage divider on input channel and
configure moving average.

A
na

lo
g

O
ut

pu
t

DqAdv102AOWrite1 Write either floating point or raw values to output
channel.

DqAdv102AOSetConfig1 Select voltage or current output mode and set range.

DqAdv102AOWriteWForm1 Load waveform data into output channel FIFO.

DqAdv102AOEnableWForm1 Enable/disable a waveform on output channel.

DqAdv102AOReadAdc1 Read back voltage and temperature from diagnostic
ADCs.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101____

Table 5-3 Low-level Digital I/O API

Function Description

In
du

st
ria

l D
In

DqAdv102DIRead1 Read the current and debounced states on DIO lines.

DqAdv102DIReadAdc1 Read voltage on DIO lines.

DqAdv102DISetDebouncer1 Set debouncing interval for digital inputs.

DqAdv102DISetLevels1 Set low and high voltage levels for digital inputs.

DqAdv102DISetMovingAverage1 Set number of samples used to calculate moving
average for every digital input ADC channel.

In
du

st
ria

l D
O

ut DqAdv102DORead1 Read back the last state written to digital outputs.

DqAdv102DOSetPWM1 Configure pulse width modulation on digital outputs.

DqAdv102DOSetTermination1 Configure pull up/down resistors.

DqAdv102DOWrite1 Set digital output state to 0, 1, or turned off.

TT
L

D
IO DqAdv102TTLRead Read the status of all TTL lines.

DqAdv102TTLWrite Set state of TTL outputs.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101____

DNx-MF-102 Multifunction I/O Board
Chapter 5 97

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.3 Counters Table 5-4 lists the low-level API functions for the DNx-MF-102 digital counter
subsystem. See Sample102CT.c for example code.

5.4.3.1 Configuration
Settings

Each counter can be independently configured using either
DqAdvCTCfgCounter() or one of the DqAdvCTCfg___() functions.
DqAdvCTCfgCounter() is the lowest level configuration function. However,
since not all parameter combinations are supported in all modes, it is easier to
use a DqAdvCTCfg___() function when possible. DqAdvCTCfg___()
automatically selects the best counting mode for the application and only
exposes relevant parameters. The counter configuration parameters are listed in
Table 5-5.

Table 5-4 Low-level Counter API

Function Description

C
ou

nt
er

s

DqAdv102CTSetSource Connect digital I/O pins to CLKIN and GATE.

DqAdv102CTSetOutput Connect one or more digital outputs to CLKOUT.

DqAdvCTStartCounter Start counter if not using auto-start mode.

DqAdvCTClearCounter Reset counter to the initial value in the load register.

DqAdvCTRead Read data from a counter.

DqAdvCTWrite Change CLKOUT signal by writing to CR0 and CR1.

DqAdvCTCfgCounter Configure advanced counter settings.

DqAdvCTCfgForGeneralCounting Configure counter as a general event counter or timer.

DqAdvCTCfgForBinCounter
Configure counter to count the number of events in a
specific time interval.

DqAdvCTCfgForPeriodMeasurement
Configure counter to measure how long CLKIN is high
and how long CLKIN is low over N periods.

DqAdvCTCfgForHalfPeriod Configure counter to measure pulse width of CLKIN.

DqAdvCTCfgForTPPM
Configure counter to measure the average period of
CLKIN over the user-defined time interval.

DqAdvCTCfgForQuadrature
Configure counter as a quadrature decoder; GATE pin
defines direction of counting.

DqAdvCTCfgForPWM Configure counter for PWM output.

DqAdvCTCfgForPWMTrain
Configure counter to output a set number of PWM
pulses.

Table 5-5 Counter Configuration Parameters
Parameter Description

startmode Auto-start or start on DqAdvCTStartCounter()
sampwidth PWM sample width
ps Prescaler value for clock division
pc Period count register; used when measuring multiple periods
cr0 Compare register 0, CLKOUT is low between lr and cr0
cr1 Compare register 1, CLKOUT is high between cr0 and cr1

DNx-MF-102 Multifunction I/O Board
Chapter 5 98

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.3.2 Counting
Modes

The following modes are selectable in DqAdvCTCfgCounter():
• Basic timer - counts the number of 66 MHz clock cycles (or cycles of

66 MHz divided by the prescaler). The output stays low as the counter
counts from lr up to cr0 and then stays high until it reaches cr1. The
counter may be used as a Bin Counter or generate a One-Shot Output
by selecting an appropriate end mode (Section 5.4.3.3).

• External event counter - similar to the Basic Timer, except the clock
source is the debounced CLKIN signal rather than the 66 MHz clock.

• Timed Pulse Period Measurement - counts the total number of rising
CLKIN edges over the tbr time interval, as well as the total number of
66 MHz clock cycles between the first and last rising edge. The average
period can be computed from these two measurements.

• Half-period capture - counts the number of 66 MHz clock cycles over
which CLKIN is high. The pulse width can then be calculated.

• N-period capture - counts the number of 66 MHz clock cycles for both
the positive and negative parts of CLKIN until pc-1 number of periods
have elapsed. The average period can then be calculated.

• Quadrature Decoder - counts the number of rising CLKIN edges,
counting up if GATE=1 and down if GATE=0.

All modes except the Quadrature Decoder support an optional hardware trigger.

5.4.3.3 End Modes The following count termination conditions are available:
• Count register reaches CR0 value

• Count register reaches CR1 value

• Count register reaches 0xFFFFFFFF

• Period count register reaches 0

tbr Timebase register; used for timed measurements
dbg Input debouncing gate register; GATE to be stable

dbc
Input debouncing clock register; defines time for CLKIN to be
stable

iie Invert CLKIN pin
gie Invert GATE pin
oie Invert CLKOUT pin
mode Counting mode (Section 5.4.3.2)
trs Use GATE as trigger
enc Auto-clear counter after end_mode and await next trigger

gated
Use GATE to enable/disable counter, if GATE is not already being
used as a trigger

re Restart counter after end_mode condition is met
end_mode Count termination condition (Section 5.4.3.3)
lr Load register; sets initial value of the counter

Table 5-5 Counter Configuration Parameters (Cont.)
Parameter Description

DNx-MF-102 Multifunction I/O Board
Chapter 5 99

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

• Timebase register reaches 0

• GATE goes from high to low

5.4.4 Serial Port Table 5-6 lists the low-level API functions for the DNx-MF-102 RS-232/422/485
serial port subsystem. See Sample102Serial.c for example code.

Table 5-6 Low-level Serial Port API

Function Description

R
S-

23
2/

42
2/

48
5

DqAdv102SerialSetConfig1 Set configuration properties for the serial port.

DqAdv102SerialClearFIFO1 Clear the input and/or output FIFOs.

DqAdv102SerialEnable1 Enable or disable serial port.

DqAdv102SerialReadRxFIFO1 Read data from the RX FIFO.

DqAdv102SerialReadRxFIFOEx1 Read data, timestamps, and status bits from the RX
FIFO.

DqAdv102SerialWriteTxFIFO1 Write data to the TX FIFO.

DqAdv102SerialSendBreak1 Transmit a break of a specified duration.

DqAdv102SerialFlowControl1 Configure RS-232 RTS/CTS hardware flow control.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101____

DNx-MF-102 Multifunction I/O Board
Chapter 5 100

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.4.1 Configuring
the Serial Port

The DqAdv102SerialSetConfig() function takes in port settings through
an MF102SERIALCFG structure and populates a configuration card.
Supported MF102SERIALCFG structure members are listed in Table 5-7. Some
parameters require a single value and some accept a logically grouped
combination of constants. Refer to the “PowerDNA API Reference Manual” for a
complete description of each parameter.

Note that <flags> defines what other parts of the configuration structure are
valid. For example, the DQ_MF102_SERIAL_CFG_CHAN flag is required to
switch the mode. If DQ_MF102_SERIAL_CFG_CHAN is not included in
<flags>, then the parameter values associated with the flag are ignored and
remain unchanged.
By using this strategy, configuration calls can be additive, so each following call
adds or changes a parameter to the configuration card. Any untouched
parameters are enabled with default values. To reset the entire configuration
back to the default state, call DqAdv102SerialSetConfig() with only the
DQ_MF102_SERIAL_CFG_CLEAR bit set in <flags>.

Table 5-7 Serial Port Configuration Parameters
Parameter Description Flag

flags OR in flags to change associated parameters n/a

baud_rate desired baud rate DQ_MF102_SERIAL_CFG_
BAUD

mode RS-232, 422, or 485 DQ_MF102_SERIAL_CFG_
CHANloopback =1 enable internal loopback

stop_bits number of stop bits
parity type of parity bit
width number of bits in each character
break_en =1 sets serial output to logical 0
term_fs_tx_rx =1 enables RS-485 termination resistors
char_delay_src delay between each character sent to FIFO DQ_MF102_SERIAL_CFG_

CHAR_DELAYchar_delay_us clock source for char_delay_us
frame_delay_mode defines minor frame for frame_delay_us DQ_MF102_SERIAL_CFG_

FRAME_DELAY
frame_delay_length

number of characters in minor frame; only for
FIXEDLEN delay mode

frame_delay_src clock source for frame_delay_us
frame_delay_us delay between minor frames
frame_delay_repeat_us repeat time between major frames
term_buf termination string DQ_MF102_SERIAL_CFG_

TERM_STRINGterm_length length of term_buf to use

timeout
number of clocks without receiving data
before timeout

DQ_MF102_SERIAL_CFG_
TIMEOUT

timeout_clock units for timeout

tx_watermark reserved DQ_MF102_SERIAL_CFG_
TX_WM

rx_watermark RX FIFO watermark for data flow control DQ_MF102_SERIAL_CFG_
RX_WM

suppress_hd_echo =1 suppresses echo in RS-422 mode DQ_MF102_SERIAL_CFG_
EXT

add_ts_on_idle
=1 adds timestamp to RX FIFO during idle
state

DNx-MF-102 Multifunction I/O Board
Chapter 5 101

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

The settings on the configuration card take effect when
DqAdv102SerialEnable() is called.

5.4.5 CAN Ports Table 5-8 lists the low-level API functions for accessing the DNx-MF-102 CAN
port subsystem. See Sample102CAN.c for example code.

Table 5-8 Low-level CAN Port API

Function Description

C
A

N
 B

us

DqAdv102CANSetMode1 Set the communication mode for a CAN port

DqAdv102CANSetChannelCfg1 Set the communication options for a CAN port

DqAdv102CANEnable1 Enables or disables both CAN ports on the MF-102

DqAdv102CANEnableChannel Enables or disables a single CAN channel (port)

DqAdv102CANSendMessage1 Sends a message from an MF-102 CAN port to the
CAN network

DqAdv102CANRecvMessage
Gets a message received on an MF-102 CAN port on
a CAN network

DqAdv102CANParseMsg
Converts CAN messsage to separate frame ID and
message

DqAdv102CANMakeVmapMsg1 Converts CAN message for use in 16-byte per
message VMap mode

DqAdv102CANGetStatus1 Returns error counts and status information from the
CAN controller for each CAN port

DqAdv102CANParseStatus
Converts CAN status data into individual register
components

DqAdv102CANSetFilter1 Sets filter pairs for a CAN port. Filtering is by message
ID.

DqAdv102CANSetWatermark1 Configure TX and RX FIFO watermarks

DqAdv102CANResetChannel1 Reset SJA-1000 chip for the specified channel

1. This function is an alias for the equivalent CAN-503 function, i.e., DqAdv503____

DNx-MF-102 Multifunction I/O Board
Chapter 5 102

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.5.1 Configuring
the CAN Ports

DNx-MF-102 CAN ports can be configured using the following Low-level API
functions:

• DqAdv102CANSetChannelCfg

• DqAdv102CANSetMode

• DqAdv102CANSetFilter

• DqAdv102CANEnable

Refer to the “PowerDNA API Reference Manual” for a complete description of
the functions and their parameters.

The DqAdv102CANSetChannelCfg() function allows configuration of
settings listed in Table 5-9 for the specified port. In addition to the port number,
the function takes a bitwise OR of the flags listed in the table.

The DqAdv102CANSetMode() function can be used to configure the
SJA1000 CAN controller to filter CAN frames. When its cmd argument is set to
DQ_MF102_CAN_SET_MASK, DqAdv102CANSetMode() takes a pointer to an
8-byte buffer that contains a 4-byte accept code followed by a 4-byte accept
mask. See the code snippet below and Section 2.5.4 for more information on
filtering CAN frames.
Filtering of CAN frames can also be done through software.
DqAdv102CANSetFilter() accepts a list of filter pairs. Each pair specifies
the start and end of a range of IDs that will be accepted.
Use DqAdv102CANEnable() to enable both DNx-MF-102 CAN ports. Use
DqAdv102CANEnableChannel() to enable to enable a single CAN port.

Table 5-9 Configuration Parameters set by DqAdv102CANSetChannelCfg
Flag Values Description

DQ_CAN102_RATE_xx DQ_MF102_CAN_RATE_50K
DQ_MF102_CAN_RATE_100K
DQ_MF102_CAN_RATE_125K
DQ_MF102_CAN_RATE_250K
DQ_MF102_CAN_RATE_500K
DQ_MF102_CAN_RATE_800K
DQ_MF102_CAN_RATE_1M

Data rate for the CAN port

DQ_CAN102_OPER_xx DQ_MF102_CAN_OPER_NORMAL
DQ_MF102_CAN_OPER_LISTEN

normal (active)
passive listen only (only in extended
mode)

DQ_CAN102_MODE_xx DQ_MF102_MODE_BASIC
DQ_MF102_MODE_XTEND

basic CAN (CAN2.0A) 11 bit ID
extended (CAN2.0B) 29 or 11 bit ID

DQ_CAN102_ID_xx DQ_MF102_CAN_ID_AUTO

DQ_MF102_CAN_ID_29BITS

default case, CAN2.0B use 11-bit IDs on
IDs <= 0x7ff, 29-bit for IDs >= 0x800 when
transmitting frames.

CAN2.0B use 29-bit IDs

DNx-MF-102 Multifunction I/O Board
Chapter 5 103

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

The following is an example sequence of using the functions listed above for
configuring the CAN ports.

//For each CAN port, set the data rate, operating mode (normal/passive),
//port mode (basic/extended), and ID size (29 bits or auto)

DqAdv102CANSetChannelCfg(hd, devn, port,
 DQ_MF102_CAN_RATE_100K | DQ_MF102_CAN_OPER_NORMAL
 DQ_MF102_CAN_MODE_XTEND | DQ_MF102_CAN_ID_AUTO);

//Set up filtering. Create accept code and accept mask
//Setting mask to 0xffffffff disables filtering,
//i.e., all messages are accepted

uint32 modeparams[2];
code = 0x00000000;
mask = 0xffffffff;
modeparams[0] = htonl(code);
modeparams [1] = htonl(mask);
DqAdv102CANSetMode (chan, DQ_MF102_CAN_SET_MASK, modeparams);

//Enable both CAN ports

DqAdv102CANEnable(hd, devn, TRUE);

DNx-MF-102 Multifunction I/O Board
Chapter 5 104

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.4.5.2 CAN Port
Status

The function DqAdv102CANGetStatus() provides CAN port status
information. When using the RtVMap DAQ mode,
DqAdv102CANParseStatus() can be used. See the RtVMap example
program in Section 5.9. Refer to the “PowerDNA API Reference Manual” for a
complete description of the functions and their parameters.

DqAdv102CANGetStatus() provides status information for both CAN ports
as well as additional information for the CAN subsystem. The status information
is returned in a buffer containing four uint32 words for CAN port 0 followed by
four uint32 words for CAN port 1. An additional two uint32 words complete
the status information.The status words for each CAN port and the two
board-wide status words are listed in Table 5-10.

Table 5-10 SJA1000 Status Words Returned by DqAdv102CANGetStatus
Status Word Bits Description

status word 0
(port n)

23..16 SJA1000_MCR - mode and control register
15..8 SJA1000_IR - interrupt register
7..0 SJA1000_SR - status register

status word 1
(port n)

31..24 SJA1000_PC_RECR RX - error count register
23..16 SJA1000_PC_TECR TX - error count register
15..8 SJA1000_PC_ECCR - error code capture register
7..0 SJA1000_PC_ALCR - arbitration lost count register

status word 2
(port n) RX FIFO level for the channel

status word 3
(port n) TX FIFO level for the channel

CLI_CANSTS CAN status logic register - board-wide; appears after per port
data

DQL_CLI_ISR ISR register - board-wide; appears after per port data

DNx-MF-102 Multifunction I/O Board
Chapter 5 105

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.5 Async Events
API

Most asynchronous event-handling functions are board-agnostic and described
in the “PowerDNA API Reference Manual”. There are two functions specific to
the DNx-MF-102. These are listed in Table 5-11.
Please see SampleAsync102DI_EdgeDetection for examples of configuring the
DNx-MF-102 to detect change of state on industrial digital input channels and
configuring the DNx-MF-102 to receive a periodic event.
Please see SampleAsync102CAN for an example of how to configure the
DNx-MF-102 to receive CAN port events including receiving data periodically,
reaching the FIFIO watermark, and bus errors or warnings.

Table 5-11 Low-level Asynchronous Events API

Function Description

A
sy

nc

DqAdv102ConfigEvents

Configure the board to send status data upon one of
the following CAN events:

• Return CAN data periodically at a
user-defined rate

• input FIFO above watermark (data
included)

• output FIFO below watermark

• bus or protocol errors

• bus warning level has been reached

• bus in passive state

• CAN contoller is taken off the bus

• RX FIFO overflow

• unexpected RX error

• unexpected TX error

Additionally, data can be sent upon the following
events:

• DIO pin changes state

• Periodically at a user-defined rate

DqAdv102ConvertEvent
Convert MF-102 event data from IOM device endian
format to host endian format

DNx-MF-102 Multifunction I/O Board
Chapter 5 106

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.6 RtDMap API Real Time Data Map (RtDMap) mode uses the same API as Point-by-Point
mode for channel configuration (Section 5.4); however, generic DMap functions
are used for reading data. The DMap API is documented in the “PowerDNA API
Reference Manual”.
Refer to SampleRTDMap102 for an example of how to set up a Data Map on the
DNx-MF-102. Table 5-12 lists the DNx-MF-102 channels that can be added to
the DMap.

A basic overview of DMap usage is provided in Section 5.6.1. More information
on RtDMap is available in the “PowerDNx Protocol Manual”.

5.6.1 DMap Tutorial This tutorial will focus on analog I/O; additional subsystems are covered in the
example code. As shown in SampleRtDMap102, a DMap program is structured
as follows:
DMap Configuration:

1. Create a DMap.

2. Configure DNx-MF-102 scan rate.

3. Configure input/output channels.

4. Add input/output channels to the DMap.

5. Start the DMap.
DMap Operation:

6. Schedule output data to write upon next refresh.

Table 5-12 DMap Channels

Subsystem Channels Notes

DQ_SS0IN DQ_LNCL_TIMESTAMP Read timestamp.

DQ_MF10X_SS_AI
0...15 for single-ended channels Read analog inputs;

See DqAdv102AIRead() for channel
gain configuration details.0...7 for differential channels

DQ_MF10X_SS_AO 0...1 Write to analog outputs.

DQ_MF10X_SS_DI

DQ_MF102_DMAP_DI_STATE Read FET-based DIO port (16 bits).

DQ_MF102_DMAP_DI_DEB Read debounced FET-based DIO port.

DQ_MF102_DMAP_DI_TTL
Read TTL DIO port;
Bits 0:1 are TTL0:1

DQ_MF10X_SS_DO
DQ_MF102_DMAP_DO_FET Set state of FET-based digital outputs.

DQ_MF102_DMAP_DO_TTL Set state of TTL digital outputs.

DQ_MF102_SS_CT

DQ_MF102_DMAP_DI_CT_0
Read counter 0;
See Section 5.4.3 and Sample102CT.c for
configuration details.

DQ_MF102_DMAP_DI_CT_1
Read counter 1;
See Section 5.4.3 and Sample102CT.c for
configuration details.

DQ_MF10X_SS_GUARDIAN
DQ_MF102_DMAP_GUARD_DI_
ADC_CHAN

Read voltage on FET-based DIO;
OR in the desired channel number (0...15).

DNx-MF-102 Multifunction I/O Board
Chapter 5 107

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

7. Refresh the DMap.

8. Read retrieved data from input channels (returned in reply to refresh).
Close Out DMap:

9. Stop and close the DMap.

5.6.1.1 DMap
Configuration

1. To create a new DMap, call DqRtDmapInit(). One copy of the DMap
is stored on the IOM and another is stored on the host. During operation
(Step 8), the IOM will update its version of the map at the rate specified
during initialization.

2. By default, all boards in the DMap are clocked at the DMap refresh rate
(set in Step 1). You can override this setting and specify a different
sampling rate for the DNx-MF-102:

3. Configure I/O channels using the Point-by-Point API. This tutorial will
focus on analog I/O; additional subsystems are covered in the example
code.

4. Add the channels to the DMap with their corresponding subsystem
names (Table 5-12).

//Create and initialize a DMap with a 100 Hz refresh rate.

DqRtDmapInit(hd, &dmapid, 100);

//Set the device scan rate to 100 Hz.

DqRtDmapSetSamplingRate(hd, dmapid, DEVN, 100);

//Optionally configure moving average

DqAdv102AISetConfig(hd, DEVN, 0, DQ_MF10X_AI_MAV_1);

//Configure 16 single-ended input channels.
//Set up an input channel list.

for(ch=0; ch<16; ch++){
input_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF102_AI_GAIN_1);

}

//Configure 2 analog output channels for range ±5V.
//Set up an output channel list.

for(ch=0; ch<2; ch++){
DqAdv102AOSetConfig(hd, DEVN, ch, DQ_MF10X_AO_RANGE_PN_5V);

 output_cl[ch] = ch;
}

//Add analog input channels to the DMap.

DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF10X_SS_AI, &input_cl, 16);

//Add analog output channels to the DMap.

DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF10X_SS_AO, &output_cl, 2);

DNx-MF-102 Multifunction I/O Board
Chapter 5 108

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5. Start the DMap with the configuration and channels requested above.

5.6.1.2 DMap
Operation

6. DqRtDmapWriteRawData() or DqRtDmapWriteScaledData()
writes output channel values to the host map. The DMap can hold one
data point per channel. However, data is not actually transferred to the
IOM until the DqRtDmapRefresh() call in Step 7.

7. Calling DqRtDmapRefresh() sends the output data from the host to
the IOM. On the reply, the IOM transfers one data point per configured
input channel to the host.

8. Input data can be read from the host’s version of the map using
DqRtDmapReadRawData() or DqRtDmapReadScaledData().

5.6.1.3 Close Out
DMap

9. Stop and clean up the DMap with the calls:

//Start the DMap.

DqRtDmapStart(hd, dmapid);

//Copy AO data to output packet (-2.5V to AOut0 and +7.5V to AOut1).

double fdata[2] = {-2.5, 7.5};
DqRtDmapWriteScaledData(hd, dmapid, DEVN, fdata, 2);

//Send output data and receive input data.

DqRtDmapRefresh(hd, dmapid);

//Read analog input voltage from DMap.

DqRtDmapReadScaledData(hd, dmapid, DEVN, fdata, 16);

DqRtDmapStop(hd, dmapid);

DqRtDmapClose(hd, dmapid);

DNx-MF-102 Multifunction I/O Board
Chapter 5 109

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.7 RtVMap API
(Analog IO)

VMap uses the same API as Point-by-Point mode for channel configuration
(Section 5.4); however, generic VMap functions are used for reading data. The
VMap API is documented in the “PowerDNA API Reference Manual”.
Refer to SampleVMap102AI_AO for an example of how to set up and run a
Variable Map (VMap) for analog input and output on the DNx-MF-102.
Table 5-13 lists all of the DNx-MF-102 channels that can be added to the VMap.

A basic overview of VMap usage is provided in Section 5.7.1. More detailed
information on RtVMap can be found in the “PowerDNx Protocol Manual”.

5.7.1 VMap Tutorial As shown in SampleVMap102AI_AO, a VMap program is structured as follows:
VMap Configuration:

1. Create a VMap.

2. Configure input/output channels.

3. Add input/output channels to the VMap.

4. Configure DNx-MF-102 scan rates.

5. Set the channel list

6. Start the VMap.
VMap Operation:

7. Schedule output data to write upon next refresh.

8. Schedule input data to read upon next refresh.

9. Refresh the VMap.

10.Read retrieved data from input channels (returned in reply to refresh).
Close Out VMap:

11.Stop and close the VMap.

5.7.1.1 VMap
Configuration

1. To create a new VMap, call DqRtVmapInit(). One copy of the VMap
is stored on the IOM and another is stored on the host. During operation
(Step 9), the IOM will update its version of the map at the rate specified
during initialization.

Table 5-13 VMap Channels

Subsystem Channels Notes

DQ_MF10X_SS_AI
0...15 for single-ended channels Read analog inputs with timestamping;

See DqAdv102AIRead() for channel
gain configuration details.0...7 for differential channels

DQ_MF10X_SS_AO 0...1 Write to analog outputs.

//Create and initialize a VMap with a 1000 Hz refresh rate.

DqRtVmapInit(hd, &vmapid, 1000);

DNx-MF-102 Multifunction I/O Board
Chapter 5 110

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2. Configure analog I/O channels and set a VMap flag for each channel
(required in Step 3).

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-13).

4. The DNx-MF-102 board is clocked according to the rates set by
DqRtVmapSetScanRate(). Since there are 16 configured channels
plus 1 automatically added timestamp channel, the board’s Input FIFO
fills at IN_SCANRATE*17. OUT_SCANRATE defines the overall rate at
which the board’s Output FIFO empties; you can fill the FIFO with a
chunk of Channel 0 data followed by a chunk of Channel 1 data, or the
two channels can be interleaved.

5. The DqRtVmapSetChannelList() function identifies the number of
physical channels on the DNx-MF-102.

6. Start the VMap with the configuration and channels requested above.

//Configure 16 single-ended input channels for range +-10V.
//Set up flag array for retrieving FIFO state.

for(ch=0; ch<16; ch++){
in_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF10X_AI_GAIN_1);

 in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}

// Optionally configure voltage divider and moving averages

DqAdv102AISetConfig(hd, DEVN, AI_DIVIDER_MASK, AI_MOVING_AVERAGES);

//Configure 2 analog output channels for range +-5V.
//Set up flag array for retrieving FIFO state.

for(ch=0; ch<2; ch++){
DqAdv102AOSetConfig(hd, DEVN, ch, DQ_MF10X_AO_RANGE_PN_5V);

 out_cl[ch] = ch;
}

//Add analog I/O channels to the VMap.

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF10X_SS_AI, in_cl, in_flags, 1);
DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF10X_SS_AO, out_cl, out_flags,
 1);

//Set the device scan rate.

DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF10X_SS_AI, IN_SCANRATE);
DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF10X_SS_AO, OUT_SCANRATE);

//Specify number of physical channels per subsystem.

DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ_MF10X_SS_AI, in_cl, 16);
DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ_MF10X_SS_AO, out_cl, 2);

//Start the VMap.

DqRtVmapStart(hd, vmapid);

DNx-MF-102 Multifunction I/O Board
Chapter 5 111

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.7.1.2 VMap
Operation

7. DqRtVmapAddOutputData() writes raw Analog Output values to the
host’s version of the map. If passing raw data directly into
DqRtVmapAddOutputData(), you must logical OR the raw data with
DQ_MF10X_CLO_AO_CHAN(ch), where ch is the channel number.
DqAdvScaleToRawValue() does this operation automatically. The
DqNtohl() helper function can be used to convert data to host endian
format. This conversion is not handled automatically because VMap
packets can contain data from many different types of IO boards.

Note that data is not actually transferred to the IOM until the
DqRtVmapRefresh() call in Step 8.

8. Use DqRtVmapRqInputDataSz() to schedule a request for data from
the IOM. You can request a variable number of data points per channel.
Note that data is not actually received until the DqRtVmapRefresh()
call in Step 8.

9. The VMap request has been prepared, so the command can be sent
with DqRtVmapRefresh(). During the refresh,

• The host transfers Analog Output data to the board’s Output FIFO in an
Ethernet packet.

• Analog Input data is transferred from the board’s Input FIFO to the host
in one Ethernet packet.

//Prepare to send 100 data points per output channel.

for (i=0; i<100; i++){
 for(ch=0; ch<2; ch++){

 DqAdvScaletoRawValue(hd, DEVN, out_cl[ch], out_fdata[i*2+ch],
 &out_bdata[i*2+ch]);
 out_bdata[i*2+ch] = DqHtonl(hd, out_bdata[i*2+ch]);
 }
}

//Copy data to the output packet.
//(the AO subsystem was added after AI, so its VMap index = 1)

DqRtVmapAddOutputData(hd, vmapid, 1, 200 * sizeof(uint32),
 &updates_accepted, (uint8*)out_bdata);

//Request 1000 data points per input channel, including timestamp.
//(the AI subsystem was configured first, so its VMap index = 0)

DqRtVmapRqInputDataSz(hd, vmapid, 0, 17000*sizeof(uint32),
 &in_act_size, NULL);

//Send output data and receive input data.

DqRtVmapRefresh(hd, vmapid, 0);

DNx-MF-102 Multifunction I/O Board
Chapter 5 112

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

If a FIFO overflow error occurs, try reducing IN_SCANRATE, increasing
OUT_SCANRATE, or increasing the DqRtVmapRefresh() rate.

10.Input data can be read from the host’s version of the map using
DqRtVmapGetInputData(). Data will need to be converted to host
endian format using the DqNtohl() function.

5.7.1.3 Close Out
VMap

11.Stop and clean up the VMap with the calls:

//Read analog input and timestamp data from VMap.
//(the AI subsystem was configured first, so its VMap index = 0)

DqRtVmapGetInputData(hd, vmapid, 0, 17000* sizeof(uint32),
 &in_data_size, &in_avl_size, (uint8*)in_bdata)

//Reverse byte order from Network to Host representation.

for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {
 recv_data = DqNtohl(hd, in_bdata[i]);
}

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-102 Multifunction I/O Board
Chapter 5 113

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.8 RtVMap API
(Serial)

VMap uses the same API as Point-by-Point mode for channel configuration
(Section 5.4); however, generic VMap functions are used for reading data. The
VMap API is documented in the “PowerDNA API Reference Manual”.
Refer to SampleVMap102Serial for an example of how to set up and run a
Variable Map (VMap) for serial communication on the DNx-MF-102. Table 5-14
lists the DNx-MF-102 channels that can be added to the VMap.

A basic overview of VMap usage for serial communication is provided in Section
5.8.1. More detailed information on RtVMap can be found in the “PowerDNx
Protocol Manual”.

5.8.1 VMap Tutorial
(Serial)

As shown in SampleVMap102Serial, a VMap program for serial communication
is structured as follows:
VMap Configuration:

1. Prepare configuration and set up channel list.

2. Create a VMap.

3. Add input/output channels to the VMap.

4. Start the VMap.
VMap Operation:

5. Prepare to write and read data upon next refresh.

6. Refresh the VMap.

7. Read input data from host’s version of the VMap.
Close Out VMap:

8. Stop and close the VMap.

5.8.1.1 VMap
Configuration

1. Prepare for serial communication by setting configuration properties,
enabling the serial port, and setting up the channel list and flags.

Table 5-14 VMap Subsystems and Channels for Serial Communication

Subsystem Channels Notes

DQ_MF102_
VMAP_SS_CHAN_IN

DQ_MF102_VMAP_CHAN_SERIAL Read serial input data.

DQ_MF102_
VMAP_SS_CHAN_OUT

DQ_MF102_VMAP_CHAN_SERIAL Write serial output data.

//Set the configuration properties and enable the serial port.
//Note that SetSerialConfiguration() calls DqAdv102SerialSetConfig()
//and DqAdv102SerialEnable()

SetSerialConfiguration(hd, DEVN);

// Set up the channel list and flags

cl_in[0] = DQ_MF102_VMAP_CHAN_SERIAL;
cl_out[0] = DQ_MF102_VMAP_CHAN_SERIAL;
flags_in[0] = DQ_VMAP_FIFO_STATUS;
flags_out[0] = DQ_VMAP_FIFO_STATUS;

DNx-MF-102 Multifunction I/O Board
Chapter 5 114

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2. Create a new VMap, by calling DqRtVmapInit(). One copy of the
VMap is stored on the IOM and another is stored on the host. The
refresh rate parameter is ignored for serial communication.

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-13), channel lists, and flags.

4. Start the VMap with the configuration and channels requested above.

5.8.1.2 VMap
Operation

Execute the following steps in the VMap Operation section until there is a
terminating condition.

5. Prepare to write and read serial data at the next refresh of the VMap.

6. Refresh the VMap.

7. Read input data from the host’s version of the map using
DqRtVmapReadInput().

//Create and initialize a VMap

DqRtVmapInit(hd, &vmapid, 0);

//Add serial I/O channels to the VMap.

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF102_VMAP_SS_CHAN_IN,
 cl_in, flags_in, 1);
DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF102_VMAP_SS_CHAN_OUT,
 cl_out, flags_out, 1);

//Start the VMap.

DqRtVmapStart(hd, vmapid);

//Prepare output data.

len = sprintf((char*)(&out_data[0]), “output string example");

// Write bytes to be sent at next refresh

DqRtVmapWriteOutput(hd, vmapid, DEVN, cl_out[0], len, out_data);

// Request the max number of bytes to receive at next refresh

DqRtVmapRequestInput(hd, vmapid, DEVN, cl_in[0], MAX_RX_MESSAGES);

// Write output data to each TX port FIFO and Read each RX port FIFO

DqRtVmapRefresh(hd, vmapid, 0);

// Read data received during the last refresh
// To treat the data as a string, add a NULL character to the end of
// in_data

DqRtVmapReadInput(hd, vmapid, DEVN, cl_in[0], MAX_RX_MESSAGES,
 &rx_data_size, in_data);

DNx-MF-102 Multifunction I/O Board
Chapter 5 115

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.8.1.3 Close Out
VMap

8. Stop and clean up the VMap with the calls:

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-102 Multifunction I/O Board
Chapter 5 116

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.9 RtVMap API
(CAN)

VMap uses the same API as Point-by-Point mode for channel configuration
(Section 5.4). However, generic VMap functions are used for reading data. The
VMap API is documented in the “PowerDNA API Reference Manual”.
Refer to SampleVMap102CAN for an example of how to set up and run a
Variable Map (VMap) for CAN port communication on the DNx-MF-102.
Table 5-15 lists the DNx-MF-102 channels that can be added to the VMap.

A basic overview of VMap usage for CAN communication is provided in Section
5.9.1. More detailed information on RtVMap can be found in the “PowerDNx
Protocol Manual”.

5.9.1 VMap Tutorial
(CAN)

As shown in SampleVMap102CAN, a VMap program for CAN communication is
structured as follows:
VMap Configuration:

1. Prepare configuration and accept filter mask and code.

2. Build channel lists.

3. Enable CAN ports.

4. Create a VMap.

5. Add transmit and receive channels to the VMap.

6. Start the VMap.
VMap Operation:

7. Prepare to write and read data upon next refresh.

8. Refresh the VMap.

9. Read input data from host’s version of the VMap.
Close Out VMap:

10.Stop and close the VMap.

Table 5-15 VMap Subsystems and Channels for CAN Communication

Subsystem Channels Notes

DQ_MF102_VMAP_SS_CHAN_IN
DQ_MF102_VMAP_CHAN_CAN_0
DQ_MF102_VMAP_CHAN_CAN_1

Receive CAN data.

DQ_MF102_VMAP_SS_CHAN_OUT
DQ_MF102_VMAP_CHAN_CAN_0
DQ_MF102_VMAP_CHAN_CAN_1

Transmit CAN data.

DNx-MF-102 Multifunction I/O Board
Chapter 5 117

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.9.1.1 VMap
Configuration

1. Prepare for CAN communication by setting configuration parameters
and the accept filter mask and code. Do this for each CAN port that will
be used by your application.

2. Build transmit and receive channel lists.

3. Enable both channels. To enable or disable one channel at a time use
DqAdv102CANEnableChannel().

4. Create a new VMap, by calling DqRtVmapInit(). One copy of the
VMap is stored on the IOM and another is stored on the host. The
refresh rate parameter is ignored for CAN communication.

//Set the configuration parameters.
//Note that in SampleVMap102CAN, DqAdv102CANSetChannelCfg() and
//DqAdv102CANSetMode() are called by SetCANConfiguration().

DqAdv102CANSetChannelCfg(hd, DEVN, chan,
 DQ_MF102_CAN_RATE_250K | DQ_MF102_CAN_MODE_XTEND |
 DQ_MF102_CAN_OPER_NORMAL | DQ_MF102_CAN_ID_29BITS);

//Set accept code and filter mask.
//The following allows all messages through.

code = 0x00000000;
mask = 0xFFFFFFFF;
modeparams[0] = DqHtonl(hd, code);
modeparams[1] = DqHtonl(hd, mask);

DqAdv102CANSetMode(hd, DEVN, chan, DQ_MF102_CAN_SET_MASK, modeparams);

//Build transmit and receive channel lists. Use the
//DQ_MF102_VMAP_CHAN_CAN(chan) macro to specify the CAN port
//For example:

cl_transmit[i] = DQ_MF102_VMAP_CHAN_CAN(TRANSMIT_CHANNEL_LIST[i]);
cl_receive[i] = DQ_MF102_VMAP_CHAN_CAN(RECEIVE_CHANNEL_LIST[i]);

//OR status bit to receive status data.

cl_receive[i] |= DQ_MF102_VMAP_CHAN_CAN_STAT;

//return "remainder" from the FIFO after read/write is completed.

flags[i] = DQ_VMAP_FIFO_STATUS;

//Enable CAN ports.

DqAdv102CANEnable(hd, DEVN, TRUE);

//Create and initialize a VMap.

DqRtVmapInit(hd, &vmapid, 0);

DNx-MF-102 Multifunction I/O Board
Chapter 5 118

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5. Add the channels to the VMap with their corresponding subsystem
names (Table 5-13), channel lists, and flags.

6. Start the VMap with the configuration and channels requested above.

5.9.1.2 VMap
Operation

Execute the following steps in the VMap Operation section until there is a
terminating condition.

7. Prepare to write and read CAN data at the next refresh of the VMap.

8. Refresh the VMap.

//Add transmit and receive channels to the VMap.

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF102_VMAP_SS_CHAN_OUT,
 cl_transmit, flags, TRANSMIT_CHANNEL_LIST_SIZE);
DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF102_VMAP_SS_CHAN_IN,
 cl_receive, flags, RECEIVE_CHANNEL_LIST_SIZE);

//Start the VMap.

DqRtVmapStart(hd, vmapid);

//Prepare output data, e.g., id of 0x580, payload of “12345678”.
//Output data is not transmitted until DqRtVmapRefresh call.

uint8 msg_buf0[8] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38 };
message_len = DqAdv102CANMakeVmapMsg(MODE, 0x580, msg_buf,
 8, (uint8*)temp);
memcpy(out_data, temp, message_len);

// Write message to be sent at next refresh.
// Perform this step for each transmit channel.

DqRtVmapWriteOutput(hd, vmapid, DEVN, cl_transmit[i],
 message_len, out_data);

// Request the max number of bytes to receive at next refresh.
// Perform this step for each receive channel

DqRtVmapRequestInput(hd, vmapid, DEVN, cl_receive[i], MAX_RX_MESSAGES);

// Write output data to each TX port FIFO and Read each RX port FIFO.

DqRtVmapRefresh(hd, vmapid, 0);

DNx-MF-102 Multifunction I/O Board
Chapter 5 119

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

9. Read input data from the host’s version of the map using
DqRtVmapReadInput(). Refer to SampleVMap102CAN for additional
details on the parsing of the received data.

5.9.1.3 Close Out
VMap

10.Stop and clean up the VMap with the calls:

// Read data received during the last refresh.
// To treat the data as a string, add a NULL character to the end of
// receive_data.

DqRtVmapReadInput(hd, vmapid, DEVN, cl_receive[i], MAX_RX_MESSAGES,
 &rx_data_size, receive_data);

//Check if status was requested. Parse status into register components.
//Registers are described in the “PowerDNA API Reference Manual”.

if (cl_receive[i] & DQ_MF102_VMAP_CHAN_CAN_STAT)
 DqAdv102CANParseStatus(hd, (uint32*)receive_data, &mcr, &ir, &sr,
 &recr, &tecr, &eccr, &alcr);

//Parse the received message.

uint32* frame = (uint32*)(&receive_data[j*ICR_SECFIFO_RD]
 +idx*sizeof(uint32));
DqAdv102CANParseMsg(hd, MODE, frame, &tstamp, &in_msgid,
 in_msgdata, &in_msglen);

DqAdv102CANEnable(hd, DEVN, FALSE);

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-102 Multifunction I/O Board
Chapter 5 120

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

5.10 AVMap API Asynchronous Variable Map (AVMap) uses the same API as Point-by-Point
mode for channel configuration (Section 5.4). However, generic AVMap
functions are used for reading data.
Refer to SampleAVMap102 for an example of how to set up and run an AVMap
on the DNx-MF-102. The example program also provides more detail on
declaring and initializing the variables used in the following tutorial. Table 5-16
lists the DNx-MF-102 channels that can be added to the AVMap.

5.10.1 AVMap
Tutorial

This section provides a basic overview of AVMap usage. As shown in
SampleAVMap102, an AVMap program is structured as follows:
AVMap Configuration:

1. Create a VMap.

2. Configure input channels, voltage divider, and moving averages.

3. Add input channels to the VMap.

4. Set the channel list and scan rates.

5. Start the VMap.
AVMap Operation:

6. Schedule input data to read upon next refresh.

7. Refresh the VMap and get data
Close Out AVMap:

8. Stop and close the VMap.

5.10.1.1 AVMap
Configuration

1. To create a new AVMap, call DqRtVmapInit().

Table 5-16 AVMap Channels

Subsystem Channels Notes

DQ_MF10X_SS_AI
(DQ_SS0IN)

ch | DQ_LNCL_GAIN
 (DQ_MF10X_AIGAIN_1)

Channel ORed with the gain bits (bits 8-11)

For differential channels, OR in
DQ_LNCL_DIFF

//Create the VMap

DqRtVmapInit(hd, &vmapid, XMAPRATE);

DNx-MF-102 Multifunction I/O Board
Chapter 5 121

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

2. Configure input channels and optionally configure voltage divider and
moving averages.

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-16).

4. Set the channel list and scan rate.

5. Start the AVMap.

5.10.1.2 AVMap
Operation

6. Setup to read data out of the VMAP. Note that data is not actually
transferred to the IOM until the DqRtVmapRefresh() call.

//Configure input channels

for (ch = 0; ch < AI_CHANNELS; ch++) {
 //Build AI channel list. For differential bitwise OR in DQ_LNCL_DIFF.
 in_cl[ch] = ch | DQ_LNCL_GAIN(AI_GAIN) /* | DQ_LNCL_DIFF */;
 in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}

//Optionally configure voltage divider and moving averages

DqAdv102AISetConfig(hd, DEVN, AI_DIVIDER_MASK, AI_MOVING_AVERAGES);

//Add channels to the VMap

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF10X_SS_AI, in_cl,
 in_flags, 1);

//Set channel list for each device in the VMap and set scan rate

DqRtVmapSetChannelList(hd, vmapid, DEVN,
 DQ_MF10X_SS_AI, in_cl, AI_CHANNELS);
DqRtVmapSetScanRate(hd, vmapid, DEVN,
 DQ_MF10X_SS_AI, IN_SCANRATE);

//Start the AVMap. Only now the transfer list is transmitted to the IOM

DqRtAXMapStart(hd, vmapid, XMAPMODE, XMAPRATE, XMAPWMRK, 0);

//Set time slot and enable flag
//Setup request for data that will occur on next DqRtVmapRefresh call

DqRtAXMapSlotAllocate(hd, TRUE, vmapid, 0);
DqRtVmapRqInputDataSz(hd,
 vmapid, vmap_in_ch, rq_size, &in_act_size, NULL);

//Update data from the IO board

DqRtVmapRefresh(hd, vmapid, 0);
DqRtAXMapEnable(hd, TRUE);
DqCmdTrig(hd);

DNx-MF-102 Multifunction I/O Board
Chapter 5 122

Programming with Low-level API

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

7. Loop through the remaining steps in AVMap Operation.

5.10.1.3 Close Out
AVMap

8. Stop and clean up the AVMap with the calls:

//Refresh Inputs
//Note that DqRtAVmapRefreshInputsExt() can return DQ_WAIT_ENDED, indicating
//that no packet was sent from the IOM to the host within the timeout.

DqRtAVmapRefreshInputsExt(hd, vmapid, &pkttype, &counter, &wm_timestamp, NULL)

// Get data from the last DqRtVmapRefresh call

DqRtVmapGetInputData(hd, vmapid, 0, rq_size, &in_data_size,
 &in_avl_size, (uint8*)in_bdata);

// Iterate through each received sample of each scan

scans_rcvd = scans_rcvd + ((in_data_size / (int)sizeof(uint32)) /
 num_input_channels);

for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {
 // Extract single sample from buffer,
 //convert data to host endian order
 recv_data = DqNtohl(hd, in_bdata[i]);

 // Check if this is a timestamp
 if (recv_data & DQ_MF10X_CLI_TIMESTAMP) {
 timestamp = (double)((recv_data & 0x7fffffff) * (1.0 /
 ((BUS_FREQUENCY) / (DQ_LN_10us_TIMESTAMP + 1))));
 fprintf(fo, "%.6f\n", timestamp);
 } else {
 // Verify data is from analog input subsystem
 recv_ss = DQ_MF10X_CLI_SS(recv_data);
 switch (recv_ss) {
 case DQ_MF10X_CLI_SS_AIN:
 // Extract channel and data from sample
 recv_ch = DQ_MF10X_CLI_AI_CHAN(recv_data);
 recv_data = DQ_MF10X_CLI_AI_DATA(recv_data);
 // Convert to scaled value and write to file
 DqAdvRawToScaleValue(hd, DEVN,
 in_cl[recv_ch], recv_data,
 &in_fdata);
 fprintf(fo, "%.6f,", in_fdata);
 break;
 default:
 break;
 }
 }
}

DqRtAXMapEnable(hd, FALSE);

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-102 Multifunction I/O Board
Appendix A 123

Accessories

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

Appendix A
Accessories

A.1 General
Purpose STP
Board and
Cable

The DNx-MF-102 is compatible with UEI’s general purpose 62-pin cable and
screw terminal board. This may be an attractive alternative when space is at a
premium and/or your application is not switching high frequency and/or high
power digital signals.

DNA-CBL-62

The DNA-CBL-62 is a 62-way round, heavy shielded cable with 62-pin male
D-sub connectors on both ends. It is 2.5 ft (75 cm) long and weighs 9.49 ounces
(269 grams).

The cable is also available in the following lengths:

• 10 ft (3.05 m) P/N DNA-CBL-62-10

• 20 ft (6.10 m) P/N DNA-CBL-62-20

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4 w x 3.8 d x1.2 h inch (10.2 x 9.7 x 3 cm) with standoffs.
The weight of the STP-62 board is 3.89 ounces (110 grams).

Figure A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

62 42 21
61 41 20
60 40 19
59 39 18
58 38 17
57 37 16
56 36 15
55 35 14
54 34 13
53 33 12
52 32 11
51 31 10
50 30 9
49 29 8
48 28 7
47 27 6
46 26 5
45 25 4
44 24 3
43 23 2

22 1

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

JT3 — 20-position
terminal block:

44

4

47

GND

JT2 — 20-position
terminal block:

7

JT1 — 20-position
terminal block:

J2 — 5-position
terminal block:

5
4
3
2
1

DNx-MF-102 Multifunction I/O Board
Appendix A 124

Accessories

November 2024 www.ueidaq.com
508.921.4600

© Copyright 2024
United Electronic Industries, Inc.

A.2 Test Adapter The DNx-TADP-102 facilitates testing of DNx-MF-102 hardware and software
independent of field wiring. The test adapter plugs into the DB-62 connector on
the DNx-MF-102 and internally loops back analog inputs to outputs, industrial
digital inputs to outputs, TTL inputs to outputs, CAN0 to CAN1, and serial
receiver to transmitter.

	DNx-MF-102 User Manual
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 Manual Conventions
	1.3 Naming Conventions
	1.4 Related Resources
	1.5 Before You Begin
	1.6 DNx-MF-102 Features
	1.6.1 Analog Input
	1.6.2 Analog Output
	1.6.3 Digital I/O
	1.6.3.1 Industrial Bits
	1.6.3.2 TTL Bits
	1.6.3.3 Counters

	1.6.4 Communication Ports
	1.6.4.1 RS-232/422/ 485
	1.6.4.2 CAN Bus Ports

	1.6.5 Guardian Diagnostics
	1.6.6 Isolation & Over-voltage Protection
	1.6.7 Environmental Conditions
	1.6.8 Accessories
	1.6.9 Software Support

	1.7 Technical Specifications
	1.7.1 Analog Input
	1.7.2 Analog Output
	1.7.3 Industrial Digital I/O
	1.7.4 TTL Digital I/O
	1.7.5 Counter/Timer
	1.7.6 Serial Port
	1.7.7 CAN Ports
	1.7.8 General

	Chapter 2 I/O Functional Descriptions
	2.1 Analog Input
	2.1.1 Analog Input Diagnostics

	2.2 Analog Output
	2.2.1 Analog Output Diagnostics

	2.3 Digital I/O
	2.3.1 Industrial Digital I/O
	2.3.1.1 Pulse Width Modulation
	2.3.1.2 Digital Output Diagnostics

	2.3.2 TTL Digital I/O
	2.3.3 Counters

	2.4 Serial Port
	2.4.1 What is a Serial Port?
	2.4.1.1 RS-232 Overview
	2.4.1.2 RS-422 Overview
	2.4.1.3 RS-485 Overview

	2.4.2 Serial Transactions
	2.4.3 Minor and Major Frames
	2.4.4 Flow Control
	2.4.5 Loopback Diagnostics

	2.5 CAN Ports
	2.5.1 What is CAN?
	2.5.2 CAN Port Architecture
	2.5.2.1 CAN and the OSI Model - Overview

	2.5.3 CAN Port Capabilities
	2.5.4 Filtering CAN Frames

	2.6 Indicators and Connectors
	2.7 Pinout
	2.8 Wiring Guidelines
	2.8.1 Analog Input Wiring
	2.8.1.1 Grounded Signals
	2.8.1.2 Floating Signals

	2.8.2 Industrial Digital Output Wiring
	2.8.3 Serial Port Wiring
	2.8.3.1 RS-232
	2.8.3.2 RS-422/485 Full Duplex
	2.8.3.3 RS-485 Half Duplex

	2.8.4 CAN Bus Wiring

	Chapter 3 PowerDNA Explorer
	3.1 Introduction
	3.2 Analog Input
	3.2.1 Configure AI Subsystem
	3.2.2 Read AI Data

	3.3 Analog Output
	3.3.1 Write AO Data
	3.3.2 Read AO Guardian Diagnostics

	3.4 Industrial Digital Input
	3.5 Industrial Digital Output
	3.5.1 Configure PWM
	3.5.2 Write to Digital Output

	3.6 RS-232/422/ 485 Port
	3.6.1 Configure Serial Port
	3.6.2 Send/Receive Data

	3.7 CAN Port
	3.7.1 Configure CAN Port
	3.7.2 Send/Receive Data

	3.8 Counter/ Timer
	3.8.1 Configure Count Mode and Sources
	3.8.2 Quadrature Mode
	3.8.3 Bin Counter Mode
	3.8.4 PWM Output Mode
	3.8.5 Frequency Mode

	3.9 Logic-Level DIO
	3.9.1 Read TTL Inputs
	3.9.2 Write TTL Data

	Chapter 4 Programming with High-level API
	4.1 About the High-level API
	4.2 Example Code
	4.3 Create a Session
	4.4 Assemble the Resource String
	4.5 Configure the Timing
	4.6 Start the Session
	4.7 Analog Input Session
	4.7.1 Configure Input Channels
	4.7.1.1 Add Input Channels
	4.7.1.2 Enable Voltage Divider
	4.7.1.3 Add Timestamp
	4.7.1.4 Configure Moving Average

	4.7.2 Read Data

	4.8 Analog Output Session
	4.8.1 Configure Output Channels
	4.8.1.1 Voltage Output
	4.8.1.2 Current Output

	4.8.2 Write Data
	4.8.3 Read Diagnostic Data

	4.9 Industrial Digital Input Session
	4.9.1 Configure Input Channels
	4.9.1.1 Adding a Port
	4.9.1.2 Adding Selected Lines

	4.9.2 Read Data
	4.9.2.1 Read DI Port
	4.9.2.2 Read Specific DI Lines

	4.9.3 Read Input Voltages

	4.10 Industrial Digital Output Session
	4.10.1 Configure Output Channels
	4.10.1.1 Add a Port
	4.10.1.2 Add Selected Lines
	4.10.1.3 Configure Pull-up/down Resistors
	4.10.1.4 PWM Modes
	4.10.1.5 Configure PWM Push/ Pull

	4.10.2 Write Data
	4.10.3 Read Output Voltages

	4.11 TTL Digital Input Session
	4.11.1 Configure Input Port
	4.11.2 Read Data

	4.12 TTL Digital Output Session
	4.12.1 Configure Output Port
	4.12.2 Write Data

	4.13 Counter Input Session
	4.13.1 Add Input Channels
	4.13.2 Route Counter to DIO Pins
	4.13.3 Counter Input Modes
	4.13.3.1 Set Capture Time Interval
	4.13.3.2 Set Number of Periods

	4.13.4 Read Count Data

	4.14 Counter Output Session
	4.14.1 Add Output Channels
	4.14.2 Route Counter to DIO Pins
	4.14.3 Counter Output Modes
	4.14.4 Write Output Parameters

	4.15 Diagnostics Session
	4.15.1 Add Input Channels
	4.15.2 Read Data

	4.16 Serial Port Session
	4.16.1 Configure the Port
	4.16.1.1 Configure Custom Baud Rate
	4.16.1.2 Configure Minor Frames
	4.16.1.3 Configure Flow Control

	4.16.2 Read Data
	4.16.3 Write Data

	4.17 CAN Bus Port Session
	4.17.1 Configure CAN Port
	4.17.1.1 Transmit Frame Auto Format
	4.17.1.2 CAN Frame Filtering

	4.17.2 Read Data
	4.17.3 Write Data

	4.18 Stop the Session

	Chapter 5 Programming with Low-level API
	5.1 About the Low-level API
	5.2 Example Code
	5.3 Data Acquisition Modes
	5.3.1 Async Events Mode

	5.4 Point-by- Point API
	5.4.1 Analog I/O
	5.4.2 Digital I/O
	5.4.3 Counters
	5.4.3.1 Configuration Settings
	5.4.3.2 Counting Modes
	5.4.3.3 End Modes

	5.4.4 Serial Port
	5.4.4.1 Configuring the Serial Port

	5.4.5 CAN Ports
	5.4.5.1 Configuring the CAN Ports
	5.4.5.2 CAN Port Status

	5.5 Async Events API
	5.6 RtDMap API
	5.6.1 DMap Tutorial
	5.6.1.1 DMap Configuration
	5.6.1.2 DMap Operation
	5.6.1.3 Close Out DMap

	5.7 RtVMap API (Analog IO)
	5.7.1 VMap Tutorial
	5.7.1.1 VMap Configuration
	5.7.1.2 VMap Operation
	5.7.1.3 Close Out VMap

	5.8 RtVMap API (Serial)
	5.8.1 VMap Tutorial (Serial)
	5.8.1.1 VMap Configuration
	5.8.1.2 VMap Operation
	5.8.1.3 Close Out VMap

	5.9 RtVMap API (CAN)
	5.9.1 VMap Tutorial (CAN)
	5.9.1.1 VMap Configuration
	5.9.1.2 VMap Operation
	5.9.1.3 Close Out VMap

	5.10 AVMap API
	5.10.1 AVMap Tutorial
	5.10.1.1 AVMap Configuration
	5.10.1.2 AVMap Operation
	5.10.1.3 Close Out AVMap

	Appendix A Accessories
	A.1 General Purpose STP Board and Cable
	A.2 Test Adapter

