

DNx-MF-102 User Manual

Multifunction I/O Board for the PowerDNA Cube and RACK Series Chassis

November 2024

PN Man-DNx-MF-102

© Copyright 2024 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility is assumed for its use, or for any infringement of patents or other rights of third parties that may result from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale: <u>http://www.ueidaq.com/cms/terms-and-conditions</u>

CE

Contacting United Electronic Industries

Mailing Address:

249 Vanderbilt Avenue Norwood, MA 02062 U.S.A.

Shipping Address:

24 Morgan Drive Norwood, MA 02062 U.S.A.

For a list of our distributors and partners in the US and around the world, please contact a member of our support team:

Support:

Telephone:	(508) 921-4600
Fax:	(508) 668-2350

Also see the FAQs and online "Live Help" feature on our web site.

Internet Support:

Support:	uei.support@ametek.com
Website:	www.ueidaq.com
FTP Site:	ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in life support devices or systems. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for current status.

Table of Contents

Chapter	1 Introduction
1.1	Organization of this Manual1
1.2	Manual Conventions
1.3	Naming Conventions
1.4	Related Resources
1.5	Before You Begin
$\begin{array}{c} 1.6\\ 1.6.1\\ 1.6.2\\ 1.6.3\\ 1.6.4\\ 1.6.5\\ 1.6.6\\ 1.6.7\\ 1.6.8\\ 1.6.9\end{array}$	DNx-MF-102 Features4Analog Input4Analog Output4Digital I/O4Communication Ports5Guardian Diagnostics5Isolation & Over-voltage Protection6Environmental Conditions6Accessories6Software Support6
1.7 1.7.1 1.7.2 1.7.3 1.7.4 1.7.5 1.7.6 1.7.7 1.7.8	Technical Specifications7Analog Input7Analog Output8Industrial Digital I/O9TTL Digital I/O9Counter/Timer10Serial Port10General11
Chapter	2 I/O Functional Descriptions
2.1 2.1.1	Analog Input
2.2 2.2.1	Analog Output
2.3 2.3.1 2.3.2 2.3.3	Digital I/O 15 Industrial Digital I/O 15 TTL Digital I/O 18 Counters 18
2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	Serial Port21What is a Serial Port?21Serial Transactions22Minor and Major Frames.23Flow Control23Loopback Diagnostics.23
2.5 2.5.1 2.5.2 2.5.3	CAN Ports

2.5.4	Filtering CAN Frames
2.6	Indicators and Connectors
2.7	Pinout
2.8 2.8.1 2.8.2 2.8.3 2.8.4	Wiring Guidelines33Analog Input Wiring33Industrial Digital Output Wiring34Serial Port Wiring35CAN Bus Wiring37
Chapter	3 PowerDNA Explorer
3.1	Introduction
3.2 3.2.1 3.2.2	Analog Input
3.3 3.3.1 3.3.2	Analog Output42Write AO Data42Read AO Guardian Diagnostics43
3.4	Industrial Digital Input
3.5 3.5.1 3.5.2	Industrial Digital Output 46 Configure PWM 46 Write to Digital Output 48
3.6 3.6.1 3.6.2	RS-232/422/485 Port. 49 Configure Serial Port 49 Send/Receive Data. 50
3.7 3.7.1 3.7.2	CAN Port
3.8 3.8.1 3.8.2 3.8.3 3.8.4 3.8.5	Counter/Timer55Configure Count Mode and Sources55Quadrature Mode56Bin Counter Mode57PWM Output Mode57Frequency Mode58
3.9 3.9.1 3.9.2	Logic-Level DIO
Chapter	4 Programming with High-level API62
4.1	About the High-level API
4.2	Example Code
4.3	Create a Session
4.4	Assemble the Resource String63
4.5	Configure the Timing
4.6	Start the Session

4.7 4.7.1 4.7.2	Analog Input Session
4.8 4.8.1 4.8.2 4.8.3	Analog Output Session 70 Configure Output Channels 70 Write Data 71 Read Diagnostic Data 71
4.9 4.9.1 4.9.2 4.9.3	Industrial Digital Input Session72Configure Input Channels72Read Data73Read Input Voltages74
4.10 4.10.1 4.10.2 4.10.3	Industrial Digital Output Session74Configure Output Channels74Write Data77Read Output Voltages77
4.11 4.11.1 4.11.2	TTL Digital Input Session 77 Configure Input Port 77 Read Data 77
4.12 4.12.1 4.12.2	TTL Digital Output Session 78 Configure Output Port. 78 Write Data. 78
4.13 4.13.1 4.13.2 4.13.3 4.13.4	Counter Input Session79Add Input Channels79Route Counter to DIO Pins79Counter Input Modes80Read Count Data81
4.14 4.14.1 4.14.2 4.14.3 4.14.4	Counter Output Session82Add Output Channels82Route Counter to DIO Pins82Counter Output Modes82Write Output Parameters83
4.15 4.15.1 4.15.2	Diagnostics Session
4.16 4.16.1 4.16.2 4.16.3	Serial Port Session86Configure the Port.86Read Data.88Write Data.89
4.17 4.17.1 4.17.2 4.17.3	CAN Bus Port Session90Configure CAN Port90Read Data91Write Data92
4.18	Stop the Session
Chapter	5 Programming with Low-level API93
5.1	About the Low-level API
5.2	Example Code

DNx-MF-102 Multifunction I/O Board iv Table of Contents

5.3 5.3.1	Data Acquisition Modes
5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5	Point-by-Point API 95 Analog I/O 96 Digital I/O 96 Counters 97 Serial Port 99 CAN Ports 101
5.5	Async Events API
5.6 5.6.1	RtDMap API
5.7 5.7.1	RtVMap API (Analog IO)
5.8 5.8.1	RtVMap API (Serial)
5.9 5.9.1	RtVMap API (CAN) 116 VMap Tutorial (CAN) 116
5.10 5.10.1	AVMap API
Append A.1 A.2	ix A Accessories123General Purpose STP Board and Cable123Test Adapter124

List of Figures

Chapter	1 Introduction	1
Chapter	2 I/O Functional Descriptions	12
2-1	Block Diagram of DNx-MF-102 Analog Input	13
2-2	Block Diagram of DNx-MF-102 Analog Output	13
2-3	Block Diagram of DNx-MF-102 Industrial Digital I/O	15
2-4	Simplified Circuit Diagram of an Industrial DIO Channel	16
2-5	Typical PWM Soft Start cycle	17
2-6	PWM Push/Pull output modes	17
2-7	Internal Structure of DNx-MF-102 Counter	19
2-8	Block Diagram of DNx-MF-102 Serial Port	21
2-9	Example of Serial Transaction	22
2-10	Major Frame with Variable-length Minor Frames	23
2-11	CAN and the ISO/OSI Model	24
2-12	Block Diagram of CAN Ports - Overview	25
2-13	Block Diagram of CAN Ports - Detail	
2-14	Photo of DNR-MF-102 Board	29
2-15	Pinout Diagram for DNx-MF-102	30
2-16	Analog Input Wiring	
2-17	Improper Analog Input Wiring	
2-18	Industrial Digital Output Wiring	35
2-19	RS-232 Wiring	35
2-20	RS-422 and RS-485 Full Duplex Wiring	
2-21	RS-485 Half Duplex Wiring	
1-11	CAN NODES CONNECTED TO A CAN BUS USING Standard 120 O Termination	.37
Chapter	3 PowerDNA Explorer	
Chapter 3-1	3 PowerDNA Explorer	38 39
Chapter 3-1 3-2	3 PowerDNA Explorer	38 39 41
Chapter 3-1 3-2 3-3	3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab	38 39 41 42
Chapter 3-1 3-2 3-3 3-4	3 PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab	
Chapter 3-1 3-2 3-3 3-4 3-5	3 PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6	3 PowerDNA Explorer	38 41 42 43 45 47
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7	3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab	38 41 42 43 45 47 48
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8	3 PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab	38 41 42 43 45 45 47 48 50
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 0-10	3 PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer Serial Tab, Send/Receive Subtab	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10	3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer Serial Tab, Send/Receive Subtab PowerDNA Explorer CAN Tab, Configuration Subtab	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 2-12	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab 	38 41 42 43 45 47 48 50 51 51 54
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 2-12	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102. PowerDNA Explorer AI Tab. PowerDNA Explorer AO Tab, Output Subtab. PowerDNA Explorer DI Tab. PowerDNA Explorer DI Tab. PowerDNA Explorer DO Tab, PWM Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer Serial Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CAN Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Configuration Subtab. 	38 41 42 43 45 45 47 48 50 51 53 54 56
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 2-14	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102. PowerDNA Explorer AI Tab. PowerDNA Explorer AO Tab, Output Subtab. PowerDNA Explorer DI Tab. PowerDNA Explorer DI Tab. PowerDNA Explorer DO Tab, PWM Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer Serial Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CAN Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CT Tab, Bin Counter Mode. PowerDNA Explorer CT Tab, Bin Counter Mode. 	38 41 42 43 45 45 47 48 50 51 53 54 56 57
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102. PowerDNA Explorer AI Tab. PowerDNA Explorer AO Tab, Output Subtab. PowerDNA Explorer DI Tab. PowerDNA Explorer DI Tab. PowerDNA Explorer DO Tab, PWM Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer Serial Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CT Tab, Bin Counter Mode. PowerDNA Explorer CT Tab, PWM Output Mode. 	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 2-10	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CT Tab, Send/Receive Subtab PowerDNA Explorer CT Tab, Bin Counter Mode PowerDNA Explorer CT Tab, Frequency Mode 	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 2-17	3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102. PowerDNA Explorer AI Tab. PowerDNA Explorer AO Tab, Output Subtab. PowerDNA Explorer AO Tab, Guardian Subtab. PowerDNA Explorer DI Tab. PowerDNA Explorer DO Tab, PWM Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer DO Tab, Output Subtab. PowerDNA Explorer Serial Tab, Configuration Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CAN Tab, Send/Receive Subtab. PowerDNA Explorer CT Tab, Bin Counter Mode. PowerDNA Explorer CT Tab, PWM Output Mode. PowerDNA Explorer CT Tab, Frequency Mode. PowerDNA Explorer TTL Tab, Input Subtab.	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CT Tab, Bin Counter Mode PowerDNA Explorer CT Tab, Frequency Mode PowerDNA Explorer CT Tab, Input Subtab 	38 39 41 42 43 45 45 47 48 50 51 53 54 56 57 58 59 60 61
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 Chapter	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CT Tab, Bin Counter Mode PowerDNA Explorer CT Tab, Bin Counter Mode PowerDNA Explorer CT Tab, Input Subtab PowerDNA Explorer TTL Tab, Input Subtab 4 Programming with High-level API 	
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 Chapter Chapter	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102	38 39 41 42 43 45 47 48 50 51 53 54 56 57 58 59 60 61 62 93
Chapter 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 Chapter Appendi	 3 PowerDNA Explorer PowerDNA Explorer for DNx-MF-102 PowerDNA Explorer AI Tab PowerDNA Explorer AO Tab, Output Subtab PowerDNA Explorer AO Tab, Guardian Subtab PowerDNA Explorer DI Tab PowerDNA Explorer DO Tab, PWM Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer DO Tab, Output Subtab PowerDNA Explorer Serial Tab, Configuration Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CAN Tab, Send/Receive Subtab PowerDNA Explorer CT Tab, Bin Counter Mode PowerDNA Explorer CT Tab, Frequency Mode PowerDNA Explorer TTL Tab, Input Subtab PowerDNA Explorer TTL Tab, Output Subtab 4 Programming with High-level API 5 Programming with Low-level API 	

List of Tables

Chapter	1 Introduction	. 1
1-1	Analog Input Specifications	7
1-2	Analog Output Specifications	8
1-3	Industrial Digital I/O Specifications	9
1-4	TTL Digital I/O Specifications	9
1-5	Counter/Timer Specifications	10
1-6	RS-232/422/485 Port Specifications	10
1-7	CAN Bus Ports Specifications	10
1-8	General and Environmental Specifications	11
Chapter	2 I/O Functional Descriptions	12
2-1	DNx-MF-102 Counter Registers	20
2-2	LED Indicators	29
2-3	Analog I/O Pin Descriptions	32
2-4	Industrial Digital I/O Pin Descriptions	32
2-5	Logic-level Digital I/O and Comm Port Pin Descriptions	32
Chapter	3 PowerDNA Explorer	38
Chapter	4 Programming with High-level API	62
4-1	DAQ Modes Supported by UeiDag Framework	65
4-2	Analog Input Ranges (Volts)	67
4-3	Diagnostic Channel Numbers	84
4-4	High-level API for Serial Port Configuration	87
Chapter	5 Programming with Low-level API	93
5-1	DAQ Modes Supported by the Low-Level API	94
5-2	Low-level Analog I/O API	96
5-3	Low-level Digital I/O API	96
5-4	Low-level Counter API	97
5-5	Counter Configuration Parameters	97
5-6	Low-level Serial Port API	99
5-7	Serial Port Configuration Parameters1	00
5-8	Low-level CAN Port API1	01
5-9	Configuration Parameters set by DqAdv102CANSetChannelCfg1	02
5-10	SJA1000 Status Words Returned by DqAdv102CANGetStatus1	04
5-11	Low-level Asynchronous Events API1	05
5-12	DMap Channels1	06
5-13	VMap Channels1	09
5-14	VMap Subsystems and Channels for Serial Communication1	13
5-15	VMap Subsystems and Channels for CAN Communication1	16
5-16	AVMap Channels1	20
Appendi	x A Accessories1	23

Chapter 1 Introduction

This manual outlines the feature set and use of the DNx-MF-102, a multifunction board with analog and digital I/O, two CAN ports, and a serial port.

The following sections are provided in this chapter:

- Organization of this Manual (Section 1.1)
- Manual Conventions (Section 1.2)
- Naming Conventions (Section 1.3)
- Related Resources (Section 1.4)
- Before You Begin (Section 1.5)
- DNx-MF-102 Features (Section 1.6)
- Technical Specifications (Section 1.7)
- **1.1 Organization** This DNx-MF-102 User Manual is organized as follows:

of this Manual

Introduction

Chapter 1 summarizes the features and specifications of the DNx-MF-102.

- I/O Functional Descriptions Chapter 2 describes the device architecture, logic, and connectivity of the DNx-MF-102 subsystems.
- PowerDNA Explorer Chapter 3 shows how to explore DNx-MF-102 features through a GUIbased application.
- **Programming with High-level API** Chapter 4 describes how to configure the DNx-MF-102, read data, and write data with the Framework API.
- Programming with Low-level API
 Chapter 5 provides an overview of C commands for configuring and using the DNx-MF-102.
- Accessories
 Appendix A provides a list of accessories available for use with the
 DNx-MF-102.

1.2 Manual Conventions

The following conventions are used throughout this manual:

Tips are designed to highlight quick ways to get the job done or to reveal good ideas you might not discover on your own.

CAUTION! advises you of precautions to take to avoid injury, data loss, and damage to your boards or a system crash.

NOTE: Notes alert you to important information.

Typeface	Description	Example
bold	field or button names	Click Scan Network
»	hierarchy to get to a specific menu item	File » New
fixed	source code to be entered verbatim	<pre>session.CleanUp()</pre>
<brackets></brackets>	placeholder for user-defined text	pdna:// <ip address=""></ip>
italics	path to a file or directory	C:\Program Files

- **1.3 Naming Conventions** The DNA-MF-102, DNR-MF-102, and DNF-MF-102 board versions are compatible with the UEI Cube, RACKtangle, and FLATRACK chassis respectively. These boards are electronically identical and differ only in mounting hardware. The DNA version stacks in a Cube chassis, while the DNR and DNF versions plug into the backplane of a Rack chassis. Throughout this manual, the term DNx-MF-102 refers to both Cube and Rack products.
- **1.4 Related Resources** This manual only covers functionality specific to the DNx-MF-102. To get started with your Cube or Rack, please see the documentation included with the software installation. On Windows, these resources can be found from the desktop by clicking **Start » All Programs » UEI**

UEI's website includes other user resources such as application notes, FAQs, tutorials, and videos. In particular, the glossary of terms may be helpful when reading through this manual: <u>https://www.ueidaq.com/glossary</u>

Additional questions? Please email UEI Support at <u>uei.support@ametek.com</u> or call 508-921-4600.

1.5 Before You Begin

No Hot Swapping!

Before plugging any I/O connector into the Cube or RACKtangle, be sure to remove power from all field wiring. Failure to do so may cause severe damage to the equipment.

Check Your Firmware

Ensure that the firmware installed on the Cube or Rack CPU matches the UEI software version installed on your PC. The IOM is shipped with pre-installed firmware and a matching software installation. If you upgrade your software installation, you must also update the firmware on your Cube or RACK CPU. See *"Firmware Update Procedures.pdf"* for instructions on checking and updating the firmware. These instructions are located in the following directories:

- On Linux: PowerDNA_Linux_<x.y.z>/docs
- On Windows:
 - Start » All Programs » UEI » DNx Firmware Update Procedures

1.6DNx-MF-102
FeaturesThe DNx-MF-102 Multifunction I/O Board is an ideal measurement solution for a
variety of automotive, aerospace and power generation applications. This
multifunction I/O board includes the following channels:

- 16 single-ended or 8 fully differential analog inputs
- 2 analog outputs
- 16 industrial digital I/O bits
- 4 TTL digital bits (2 input, 2 output)
- 2 counter/timers, routable to TTL or industrial digital I/O
- 1 RS-232/422/485 port
- 2 CAN ports (CAN 2.0A and CAN 2.0B are supported)

1.6.1 Analog Input The DNx-MF-102 is equipped with 16 independently configurable analog input channels and an 18-bit A/D converter. Inputs are buffered to eliminate multiplexer-based settling time issues. Each channel supports a sampling rate of up to 2000 samples/s (32 kS/s aggregate), and channels can be paired to measure in differential mode.

The board offers software-selectable A/D ranges between ± 80 V to ± 0.156 V. The upper end eliminates the need for external signal conditioning, while the lower end allows for precise measurements down to 1.19 microvolts resolution.

To improve noise immunity, an Embedded Averaging engine automatically acquires as many samples as possible for the given gain/speed and calculates the average.

1.6.2 Analog Output Two 16-bit analog output channels are independently configurable as either voltage output or current output. Users may choose among software selectable ranges up to ±10 V or 0-20 mA.

For applications requiring higher output current or voltage, please refer to the DNx-AO-308-35x series boards.

1.6.3 Digital I/O The DNx-MF-102 includes 16 channels of industrial digital I/O and four channels of logic-level I/O (two input and two output).

1.6.3.1 Industrial Bits The industrial digital I/O subsystem operates across a wide range, from 3.3 V to 55 VDC. Each industrial bit is independently configurable as either input or output. Voltage is supplied in groups of 4 bits (up to 4 different VCCs across 16 bits).

Inputs: Each input is sensed with a dedicated 200 kHz A/D converter. High and low thresholds are therefore programmable and state changes can be detected with 5 microsecond resolution. Programmable pull up/down resistors allow inputs to monitor contacts connected to a supply voltage or ground. In the absence of an external supply voltage, the lines are weakly pulled up to an internal 60 V supply (via a 2 M Ω resistor); this ensures that inputs allow the full 0-55 V range, but can be easily overdriven by an external source.

Outputs: Each output may be configured as either current sourcing (connect output to Vcc) or sinking (connect output to Gnd). Outputs are rated for continuous operation at 500 mA with an output voltage drop of less than 600 mV. Each channel is protected with a 1.25 Amp fast-blow fuse.

Industrial digital outputs are equipped with an optional pulse-width modulated (PWM) "soft-start" or "soft-stop" feature. This allows power to be applied/ removed gradually, greatly increasing the reliability of devices like incandescent bulbs where thermal shock reduces life expectancy. The 'soft-start" parameters are selectable on a per-channel basis.

PWM can also be configured to run continuously for low speed, high voltage/ current applications. The board supports pulse-width resolution up to 16-bits and frequency up to 10 kHz.

- **1.6.3.2 TTL Bits** A total of four logic-level channels are provided: two channels are dedicated input channels and two are dedicated output channels. Outputs use 5 V logic, but inputs are compatible with either 3.3 V or 5 V.
- **1.6.3.3 Counters** Two 32-bit counters perform up/down counting. Several flexible modes are available including event counting, pulse-width/period measurements, and quadrature decoding. Counter inputs and outputs can be routed to your choice of industrial DIO or TTL DIO pins.
- **1.6.4 Communication**One RS-232/422/485 serial communication port and dual CAN ports round out **Ports** the board's capabilities. CAN 2.0A and CAN 2.0B are supported.
- **1.6.4.1RS-232/422/**
485The serial port is software configurable to RS-232, 422, or 485. The on-board
UART supports programmable baud rates from 300 baud to 2 Mbaud, character
width, parity, and stop bits.
- **1.6.4.2 CAN Bus Ports** The DNx-MF-102 provides dual CAN bus ports. Data rates of up to 1 Mbps are supported. The DNx-MF-102 is compatible with CAN 2.0A (11-bit identifiers) and CAN 2.0B (29-bit identifiers).

1.6.5 Guardian The DNx-MF-102 includes the following built-in diagnostic features: **Diagnostics**

- Analog Inputs monitor PGA and report out-of-range error with every data sample
- **Analog Outputs** monitor output voltage, supply voltage, and temperature on each channel and timestamp the start of each scan
- Industrial Digital Outputs monitor output voltage and timestamp the start of each scan

- **1.6.6**Isolation &
Over-voltage
ProtectionThe DNx-MF-102 offers 350 Vrms of isolation between itself and other I/O
boards as well as between the I/O connections and the chassis. Separate
isolation zones are provided for each of the following signal types:
 - Analog I/O (inputs and outputs have separate grounds)
 - Industrial DIO
 - TTL/Serial
 - CAN 0
 - CAN 1
- **1.6.7 Environmental** Like all UEI I/O boards, the board offers operation in extreme environments and has been tested to 5 g vibration, 100 g shock, from -40 to +85 °C temperatures and will function at altitudes up to 70,000 feet.
- **1.6.8** AccessoriesThe DNx-MF-102 is supported by UEI's general purpose DNA-CBL-62
62-conductor round shielded cable and DNA-STP-62 Screw Terminal Panel.
See Section A.1 for more information.

For those wishing to create their own cables, all connections are through a standard 62-pin "D" connector, allowing OEM users to build custom cabling systems with off-the-shelf components.

1.6.9 Software Support
The DNx-MF-102 includes a software suite supporting Windows, Linux, QNX, VXWorks, RTX, and most other popular real-time operating systems. Windows users may use the UeiDaq Framework, which provides a simple and complete software interface to all popular programming languages and DAQ applications (e.g., LabVIEW, MATLAB). All software includes example programs that make it easy to copy-and-paste the I/O software into your applications.

1.7Technical
Specifi-
cationsThe following tables list the technical specifications for the DNx-MF-102 board.
All specifications are for a temperature of 25°C±5°C unless otherwise stated.

1.7.1 Analog Input

Table 1-1 Analog Input Specifications

Number of channels	16 single-ended or 8 full	y differential
Input configuration	Multiplexed	
ADC resolution	18 bits	
Sampling rate	2000 samples/second per channel	
High voltage mode	Resolution	Accuracy (at 25°C)
±80 V	610 μV	±24 mV
±20 V	153 μV	±6 mV
±5 V	38.1 µV	±2.5 mV
±1.25 V	9.54 µV	±700 μV
Input impedance	> 1.13 MΩ Diff / 1565 kΩ	2 SE
Input offset current	< 72 µA	
Overvoltage protection	± 100 Vdc	
Low voltage mode	Resolution	Accuracy (at 25°C)
±10 V	76.3 µV	±1.125 mV
±2.5 V	19.1 µV	±300 μV
±0.625 V	4.77 μV	±170 μV
±0.156 V	1.19 µV	±115 μV
Input impedance	> 10 MΩ	
Input offset current	±1 nA max, ±0.5 nA typical	
Overvoltage protection	± 100 Vdc	
Common mode rejection	100 dB typical (differential mode)	
Common mode rejection	lie ab typical (amerera	la modo)

NOTE: The accuracy specification may not be met for voltages that are within 99-100% of either end of the range.

1.7.2 Analog Output

Table 1-2 Analog Output Specifications

2 channels
16-bit resolution
±10 V, ±5V at ±5 mA
3 ppm/°C typical, 10 ppm/°C max
±3 mV
±1.5 mV
< 0.1 Ω not including any cables
0-20 mA, 4-20 mA, -1-22 mA
3 ppm/°C typical, 10 ppm/°C max
±3 µA
±2.6 μΑ
±3.5µA
750 Ω
2000 updates/sec max, per channel
100 µS to 0.03%
350 Vrms (analog in and out share one ground)

1.7.3 Industrial Digital I/O

Table 1-3 Industrial Digital I/O Specifications

Number of channels	16 bits
I/O direction	independently selectable per bit
Digital Input	
Input range	0-55 VDC
Input high / low voltage	Programmable from 0-55 VDC
Input impedance	> 1.1 MΩ
Input open circuit state	98 kΩ pull-up or pull-down resistors are software enabled.
Input protection	±100 VDC
Input clock rate	200 kHz
Guardian input accuracy	±275 mV (15 ppm/°C)
Input throughput	1 kHz max
Digital Output	
Configurations	Current sink/source, Ground/open, or Vcc/open (Vcc is user provided in banks of 4 bits)
Output drive	500 mA per channel, continuous
Output protection	1.25 Amp fast-blow fuse on each output
Output voltage drop	< 600 mV at 500 mA (Incl std 3' cable)
Output Off impedance	> 1.1 MΩ
Output Off leakage current	< 50 µA (with 55 V input)
Output throughput	1000 updates per second, max
PWM output	0 to 100% in 0.0015% increments (16-bit resolution)
PWM cycle rate	up to 10 kHz

1.7.4 TTL Digital I/O

Table 1-4 TTL Digital I/O Specifications

Number of channels	4 bits
I/O direction	2 bits input, 2 bits output
Logic level	5 V logic

1.7.5 Counter/Timer

Number of counters	2
Resolution	32 bits
	66 MHz for internal input clock
Max frequency	16.5 MHz for external input clock
	33 MHz for outputs
Min frequency	no lower limit
	Initial accuracy: ±10 ppm
Internal 66 MHz timebase	Temp drift: ±15 ppm over full temp range
	Time drift: ±5 ppm year one, then lower
Pulse-width/period accuracy	2 internal clock cycles (30 ns) on one or multiple
	periods
External gate/trigger inputs	1 per counter, programmable polarity

Table 1-5 Counter/Timer Specifications

1.7.6 Serial Port

Table 1-6 RS-232/422/485 Port Specifications

Number of Ports	1 port
Configuration	software selectable RS-232, 422 or 485
Max baud rate	RS-232: 256 kb/s, RS-422/485: 2 Mb/s
Baud rate selection	300 to 2 Mbaud, 0.01% or better accuracy
RS-232/485 transceiver	MAX3160E with fail-safe RS-485 RX term
FIFO size	2048-word TX, 2048-word RX

1.7.7 CAN Ports

Table 1-7 CAN Bus Ports Specifications

Number of Ports	2 ports
Interface specification	Complies with CAN 2.0A and CAN 2.0B
Maximum data rate	1 Mbps
FIFO buffers	TX: 128 messsages RX: 256 messsages

1.7.8 General

	350 Vrms of isolation between itself and other I/O				
	boards as well as between the I/O connections				
	and the chassis.				
	Separate isolation zones for:				
Electrical Isolation	 Analog I/O (inputs and outputs have separate 				
	grounds)				
	Industrial DIO				
	TTL/Serial				
	• CAN 0				
	• CAN 1				
Power Consumption	< 5 W (not including output loads)				
Operating Temp. (tested)	-40 °C to +85 °C				
Operating Humidity	95%, non-condensing				
*Vibration IEC 60068-2-6	5 g, 10-500 Hz, sinusoidal				
IEC 60068-2-64	5 g (rms), 10-500 Hz, broadband random				
*Shock IEC 60068 2 27	100 g, 3 ms half sine, 18 shocks @ 6 orientations				
SHOCK IEC 00008-2-27	30 g, 11 ms half sine, 18 shocks @ 6 orientations				
Altitude	70,000 feet, maximum				
MTBF	140,000 hours				
Weight	4.9 oz (138 grams)				

Table 1-8 General and Environmental Specifications

*Shock and vibration specifications assume appropriate mounting/installation.

Chapter 2 I/O Functional Descriptions

This section describes the device architecture and hardware of each of the DNx-MF-102 board's functional blocks. The following sections are provided in this chapter:

- Analog Input (Section 2.1)
- Analog Output (Section 2.2)
- Digital I/O (Section 2.3)
- Serial Port (Section 2.4)
- CAN Ports (Section 2.5)
- Indicators and Connectors (Section 2.6)
- Pinout (Section 2.7)
- Wiring Guidelines (Section 2.8)

2.1 Analog Input The DNx-MF-102 supports eight fully differential analog input channels. As shown in **Figure 2-1**, the input lines are connected to 1/8th voltage dividers (140 k Ω /1 M Ω) which may be switched on or off. These dividers allow the board to accept input voltages up to +/- 80 V.

Each input is buffered to reduce multiplexer settling time issues and increase accuracy for high impedance sources. A multiplexer passes the inputs one by one into a programmable gain amplifier (PGA). The 18-bit A/D converter samples the multiplexed channel and performs signal averaging for further noise reduction.

If desired, each differential channel may be configured as 2 single-ended channels for a maximum of 16 single-ended channels. In single-ended mode, an on-board multiplexer connects the negative terminal of the differential A/D converter to ground. When using single-ended mode, we recommend configuring the analog input channels to use a moving average to aid in compensating for any noise that may be present. Both the UeiDaq Framework and low-level API provide support for configuring analog inputs to use moving averages.

The I/O circuitry is optically isolated from the control logic.

Figure 2-1 Block Diagram of DNx-MF-102 Analog Input

- **2.1.1 Analog Input Diagnostics** The DNx-MF-102 monitors the PGA output and reports if the currently sampled channel exceeds the input range. Over-voltage suggests that data for this sample and the next could be invalid.
- 2.2 Analog Output

As shown in **Figure 2-2**, the DNx-MF-102 is equipped with two analog output channels. Each channel may be independently configured to output either voltage or current through its own dynamic 16-bit D/A converter. All analog input and output channels share the same ground and same reference but are isolated from the control logic.The FPGA writes to both DACs simultaneously and the two output channels are synchronized within 1.5 μ s.

Figure 2-2 Block Diagram of DNx-MF-102 Analog Output

- **2.2.1 Analog Output** Each output channel is equipped with a diagnostic 12-bit ADC built into its DAC. The diagnostic ADC reports DAC overload and has 4 read back channels:
 - DAC temperature
 - Voltage on AOut
 - Voltage on AGnd
 - Supply voltage

In voltage output mode, the supply voltage should read approximately 15 V. In current output mode, the supply voltage is dynamically regulated to 4.95 V or ($I_{OUT} \times R_{LOAD}$ + headroom), whichever is greater. The headroom has a minimum value of 2.3 V.

2.3 Digital I/O The DNx-MF-102 digital I/O subsystem includes 16 industrial I/O channels, and four TTL I/O channels. Two of the TTL channels are dedicated input channels and two are dedicated output channels. Each industrial I/O channel is independently configurable. All digital I/O signals are isolated from the FPGA.

2.3.1Industrial
Digital I/OFigure 2-3 shows a simplified block diagram of the ADC-based digital I/O
subsystem. DIO channels may be configured as either input or output.

Inputs are buffered to protect against input loading and simultaneously sampled at 200 kHz by 14-bit A/D converters (one ADC per DIO channel). The control logic compares the ADC voltage to user-defined High and Low thresholds and returns the digital state. Inputs may also be debounced with programmable delays. The source impedance of digital inputs should be 5 k Ω or below.

NOTE: While the ADC can technically read in the DIn lines as if they were analog inputs, this is not a recommended use of these channels.

Figure 2-3 Block Diagram of DNx-MF-102 Industrial Digital I/O

Outputs are switched by a FET-based circuit (**Figure 2-4**) and require an external DC power supply. Up to 4 different +DVcc's may be supplied to the DNx-MF-102 board. Users should ensure that each +DVcc can supply enough current for all four channels it powers, up to 500 mA max/channel.

Figure 2-4 Simplified Circuit Diagram of an Industrial DIO Channel

As illustrated in **Figure 2-4**, each output is set to LOW, HIGH, or OFF by a highside/low-side pair of FETs. When the FPGA writes a 1 on the Dout_HIGH line, the high-side FET turns on and connects the DIO pin to +DVcc (current sourcing). When a 1 is written to the DOut_LOW line, the low-side FET connects the DIO pin to DGnd (current sinking). The control logic prevents both FETs from being on currently. When both high- and low-side FETs are disabled, the pin can be used as a dedicated input.

Each pin's open-circuit state is software programmable to DVcc, Gnd, or DVcc/2. This is achieved by connecting the pin to an internal 98 k Ω pull-up resistor, 98 k Ω pull-down resistor, or both resistors respectively.

NOTE: The industrial digital output channels do NOT include built-in antikickback diodes. If the channel is used to source or sink an inductive load, we recommend connecting an external diode to protect the FETs against induced voltage spikes (see Section 2.8.2 for wiring information).

If +DVcc is disconnected, the positive rail is automatically pulled up to an internal +60 V supply by a 2 M Ω resistor. The internal supply prevents accidental floating inputs and allows digital inputs to work properly without a user-supplied +DVcc. A user-supplied +DVcc is only required for digital outputs.

When pulled up to the +60 V supply, an unused DIO pin will have some voltage under 60 V (varies with the number of DO pins driving HIGH). The large 2 M Ω pull-up resistance protects user equipment from this voltage. To set the unused pin to zero, you can add an external 100 k Ω pull-down resistor.

2.3.1.1 Pulse Width Modulation The DNx-MF-102 offers built-in pulse width modulation (PWM) on industrial digital outputs. PWM mode, frequency, duty cycle, and push/pull mode are per channel configurable.

PWM modes include:

- **Continuous PWM** The duty cycle is constant over the entire period of operation. A typical application for this feature is a dimmer for an incandescent indicator light in which the average voltage applied to a bulb is increased or decreased by varying the PWM duty cycle.
- **Soft Start** As shown in **Figure 2-5**, a soft start increases the PWM duty cycle gradually from 0% up to the configured steady-state value. This feature is useful in preventing premature burnout of devices (such as incandescent bulbs) caused by too rapid heating on startup.
- **Soft Stop** Soft stop is the opposite of soft start. The duty cycle decreases gradually down to 0% when the output transitions from HIGH to LOW. The typical application for soft stop mode is a soft start operation that is implemented with inverted logic.

Figure 2-5 Typical PWM Soft Start cycle

A PWM output can be configured to switch one or both FETs in the channel. A break-before-make interval prevents both FETs from being on at the same time, as shown in **Figure 2-6**.

Push and Pull: switch both FETs; break-before-make is visible

Figure 2-6 PWM Push/Pull output modes

It is also possible to generate pulse trains using the counters described in Section 2.3.3. However, the built-in PWM system is easier to use and therefore recommended for industrial digital outputs.

- 2.3.1.2 Digital Output Diagnostics Because DOut and DIn share the same pin, the board can readback DOut voltage through the Din ADC. The board does not currently support output current monitoring, but it does provide over-current protection using a 1.25 A fast-blow fuse on each output channel.
- **2.3.2 TTL Digital I/O** The TTL bits use 5 V logic levels (an input between 2 V and 5 V is a HIGH, while a voltage below 0.8 V is a LOW). The DNx-MF-102 is capable of single read/ write into the registers as well as continuous clock reads and writes. PWM signals can be generated on TTL outputs via the counter subsystem described in Section 2.3.3.
- **2.3.3 Counters** Industrial and TTL DIO pins may be routed to two 32-bit counters in order to perform a number of customizable operations including:
 - **Timer:** count off a user-defined time interval
 - Event Counter: count the number of rising or falling edges on a signal
 - Bin Counter: count the number of pulses in the specified time interval
 - **Pulse-Width/Period:** measure the width of the positive and/or negative parts of the input signal
 - **Timed Pulse Period Measurement:** measure average frequency of incoming pulses over a user-defined time interval
 - **Quadrature Decoder:** measures relative position from a quadrature encoder sensor
 - **PWM Generator:** output a pulse-width-modulated waveform and update its period and duty cycle on the fly

As shown in Figure 2-7, each counter has three lines:

- Input clock (CLKIN): takes in the signal to be measured
- **Output clock (CLKOUT):** drives one or more digital output pins according to the counter's mode of operation
- **Gate/Trigger input (GATE):** takes in a gating signal, start/stop/restart trigger, or the quadrature encoder direction

Both input lines are connected to de-bouncers to eliminate unwanted spikes in the signals. The counter counts up to 2^32 and can be clocked by either **CLKIN**, a 66 MHz internal base clock, or a divided version of either clock.

NOTE: If the counter is routed to industrial digital inputs, the measurement resolution is limited by the 200 kHz DIn ADC clock rate (e.g., pulse width will be returned in 2.5 µs increments). TTL-level inputs do not use the ADC and can therefore be measured down to 15 ns.

The counter's behavior is defined according to the values of the registers shown in **Figure 2-7** and described in **Table 2-1**. Refer to Chapter 4 and Chapter 5 for information about configuring the counting modes.

Figure 2-7 Internal Structure of DNx-MF-102 Counter

Reg	Name	Description				
CCR	Counter Control Register	defines the operation mode of the counter and prescaler				
CR	Main Counter Register	stores the count; counts upward in all modes except for quadrature decoder mode which allows both up and down counting				
CR0	Compare Register 0	defines how long CLKOUT stays low				
CR1	Compare Register 1	defines how long CLKOUT stays high				
CRH	Capture Register HIGH	used when the counter measures parameters of the CLKIN signal				
CRL	Capture Register LOW	used when the counter measures parameters of the CLKIN signal				
CTR	Control Register	enables/disables the counter, enables/disables inversion mode for I/O pins and buffered FIFO operation				
ICR	Interrupt Mask Register	clears interrupt condition(s) after a CPU processes them				
DBC	CLKIN De-bouncing Register	defines number of 66 MHz clock cycles for which the Input Clock signal must be stable				
DBG	GATE De-bouncing Register	defines number of 66 MHz clock cycles for which the Gate signal must be stable				
IER	Interrupt Enable Register	enables/disables interrupt generation; 16 interrupt conditions are available				
ISR	Interrupt Status Register	reports status of the enabled interrupts				
LR	Load Register	stores the initial value from which the counter starts counting				
PC	Period Count Register	used when measuring a signal that is too fast to read every period; data from CR is supplied only when measured data has accumulated over N periods				
STR	Status Register	reports current status of the counter operation				
TBR	Timebase Register	defines the measurement time interval in certain modes				

Table 2-1 DNx-MF-102 Counter Registers

2.4 Serial Port The DNx-MF-102 offers a fully isolated serial interface which is softwareconfigurable as RS-232 or RS-485 (half or full-duplex). The board is also compatible with RS-422 networks when used in RS-485 full-duplex mode. A block diagram of the serial subsystem is shown in **Figure 2-8**. A MAX3160E transceiver translates voltage levels on the TX and RX lines to logical zeros and ones. The data stream to and from the MAX3160E is controlled by an emulated UART 16550 serial controller, which reads and writes data from 2048-word FIFOs.

Figure 2-8 Block Diagram of DNx-MF-102 Serial Port

The remainder of this section is intended as a review of serial port concepts to supplement the programming chapters.

- 2.4.1 What is a Serial Port? A serial port transfers data one bit at a time over a given line. RS-232/422/485 standards define the hardware connection between sender and receiver, such as the number of lines, the wiring scheme, and the signal's electrical characteristics. Please see Section 2.8.3 for wiring diagrams.
- 2.4.1.1 RS-232 An RS-232 interface provides a bidirectional, full-duplex, serial connection from 1 transmitter to 1 receiver over short distances. RS-232 requires three wires: RX, TX, and a common ground. Voltages on TX and RX are bipolar (±5V on the DNx-MF-102) and measured relative to the ground wire An example TX signal is shown in Figure 2-9. The EIA/TIA RS-232-C (1969) standard recommends distances of less than 50 feet at signaling rates below 19200 baud; noise becomes a problem as baud rate and line length increase.
- 2.4.1.2 RS-422 Overview
 The RS-422 specification was designed to provide a unidirectional, full-duplex, serial connection from 1 transmitter to up to 10 receivers. RS-422 requires four wires for balanced differential signaling: Rx+, Rx-, Tx+, and Tx-. The MAX3160E transceiver drives outputs at 0V and 5V, as shown in Figure 2-9, and reads in voltages up to ±7V per the specification. The voltage difference between the two +/- wires represents the signal value, rather than the voltage level of just one wire. This approach eliminates a significant amount of noise and permits higher data rates and cable lengths compared to RS-232. While RS-422 was designed to support a multi-drop topology, in practice it is most commonly used as a longdistance substitute for RS-232 point-by-point topologies.

- 2.4.1.3 RS-485 Overview An RS-485 interface provides a bidirectional serial connection between 32 transmitters and 32 receivers. A twisted wire pair is required for balanced differential signaling: Data+ and Data-. The MAX3160E transceiver transmits data at 0 V and 5 V and accepts voltages over the required common mode range of -7 V to +12 V. The user designs the access protocol, which usually involves one "master" device that coordinates one slave device (of 31) to transmit at a time.
- 2.4.2 Serial The UART 16550 controller takes characters to be transmitted from a 2048 x 8-bit word TX FIFO and assembles them into UART frames by adding start, parity, stop bits, delays. Received characters are parsed from the frame and stored in a 2048 x 8-bit word RX FIFO.

A typical UART data frame is illustrated in Figure 2-9. The frame consists of:

- Start Bit: Signals that data bits will follow.
- **Data Bits:** Characters are sent LSB first. Default character width is 8 bits but may be reduced to 5, 6, or 7 bits.
- **Parity Bit:** Optional error correction bit that checks whether the number of 1's in the data is odd or even.
- Stop Bit: Sets line to the idle state so that the next Start Bit can be seen.

The serial port on the DNx-MF-102 is capable of baud rates up to 256 Kbits/s for RS-232 and 2 Mbits/s for RS-422/485. This rate includes the start, parity, and stop bits.

2.4.3 Minor and Major Frames UART frames, as described above, can be grouped together into a minor frame. Minor frames can be assembled into a major frame, and the transmitter can be configured to auto-repeat the major frame. The delays between when the next character, minor frame, and major frame are sent to the TX FIFO are all programmable.

		Major Frame			
Minor F	Frame	[
ART Frame	UART Frame	UART Frame	UART Frame	UART Frame	

major frame repeat period

Figure 2-10 Major Frame with Variable-length Minor Frames

- **2.4.4 Flow Control** Flow control is useful in situations where the transmitter sends data faster than the receiver process it. The DNx-MF-102 serial port supports hardware handshaking in RS-232 mode. The Request to Send (RTS) pin is asserted when the DNx-MF-102 is ready to receive data. RTS is de-asserted when the RX FIFO has filled up to a configurable watermark level. Before sending data, the DNx-MF-102 checks if the receiver has set the Clear to Send (CTS) pin to a positive voltage level.
- 2.4.5 Loopback When enabled, the loopback feature connects RX to TX internally and disables external signals from being generated. Software and port settings can then be tested independent of external devices and wiring.

2.5 CAN Ports The DNx-MF-102 provides two independent CAN ports. The ports support bit transfer rates of 50, 100, 125, 250, 500, 800, and 1000 kbps. Both CAN 2.0A (11-bit identifiers) and CAN 2.0B (29-bit and 11-bit identifiers) are supported.

2.5.1 What is CAN? A Controller Area Network (CAN) is a multi-cast, shared, serial bus standard designed to operate in electromagnetically noisy environments, such as automotive and general industrial locations. The shared serial bus is called a CAN bus.

Machines, sensors, and other devices on the CAN bus are nodes.

In a vehicle, for example, the CAN bus can control a car's dashboard displays, power windows, power locks, windshield wipers, exterior lighting, and so forth. Another higher-speed CAN bus can control the engine and brake system operation.

- 2.5.2 CAN Port The following provides an overview of the software architecture for the DNx-MF-102 dual CAN ports.
- 2.5.2.1 CAN and the OSI model Overview The CAN communication stack may be represented using the OSI model, as shown in Figure 2-11. The *physical* and *data-link* layers are implemented by the DNx-MF-102 hardware.

CAN-based Protocol Standard

۵	Application
var	Presentation
oft	Session
Ň	Transport
	Network

CAN 2.0A	Data Link
398	
ISO118	Physical

Software support facilities that are not part of the OSI Model	^{API} UeiDaq Framework
– Create CAN frames – Transceive CAN frames	Driver PowerDNA Driver
Logical Link Control Acceptance Filtering Recovery Management Media Access Control Frame Coding Serialization/deserialization Error Detection	MF-102 CAN Controller SJA1000
Physical Signaling Bit Encoding/Decoding & Timing	
Driver/Receiver Characteristics	MF-102 CAN Transceiver TJA1050
MO Interface	MF-102 Connectors
Cable & Connectors	Cables

Figure 2-11 CAN and the ISO/OSI Model

Frames are retrieved from the DNx-MF-102 by the PowerDNA driver and passed to the user application (usually by facility of the UeiDaq Framework). The user application is allowed the freedom and responsibility of implementing the layers above the data-link and physical layers with any additional protocol you choose to use (such as CANopen, J1939, DeviceNet, SDS, CAN Kingdom, proprietary, or custom).

At the hardware level, data passes at the physical level through *cabling* and the *connector* through the *TJA1050 CAN transmitter/receiver*, which is controlled by the *SJA100 CAN controller*.

A block diagram of the DNx-MF-102 CAN port is shown in Figure 2-12.

Figure 2-12 Block Diagram of CAN Ports - Overview

As illustrated in Figure 2-13, the CAN bus transmits and receives electrical signals that flow through the to 62-pin connector, from/to the TJA1050 CAN transceiver chip. The TJA1050 CAN transceiver acts as an interface to the SJA1000 CAN interface controller – it assists the SJA1000 by handling transmission/reception to/from the CAN bus.

The transceiver and controller are isolated from one another by a high-speed electrical isolation IC. There are two TJA1050 » isolation » SJA1000 structures, one per port; isolation is per-port.

The SJA1000 is in turn controlled by an FPGA Control Chip. The FPGA works in conjunction with the CPU module's logic.

Figure 2-13 Block Diagram of CAN Ports - Detail

2.5.3 CAN Port Capabilities

The CAN controller is capable of communicating using the CAN 2.0A and CAN 2.0B protocols. Controller communication speeds are software selectable between 50 kbps and 1 Mbps – speed is dependent on noise and cable length. The CAN specification recommends a maximum speed of 125 kbps for cables up to 500 m in length and a maximum speed of 1 Mbps for cables up to 40 m. The device can be operated in single-scan, continuous, or continuous with FIFO modes. The 64-byte FIFO on the SJA1000 can store up to 21 messages. The controller can operate in active transmission mode or passive listen-only mode. The controller has built-in filter-circuitry to target specific messages.

The TJA1050 uses an EMI-resistant differential receiver to capture data from the line. It can operate in "listen mode" where the transmitter is disabled, and can send/receive raw CAN data at speeds up to 1 Mbaud. In the DNx-MF-102 implementation, a bandwidth of two ports at 500 kbps each (i.e., 1 Mbps total) can be sustained effortlessly over a local CAN bus. Also, note that when powered down, the TJA1050 and the DNx-MF-102 do not disturb the bus lines.

2.5.4 Filtering CAN Frames The SJA1000 CAN Controller provides an acceptance filter that is useful for accepting or rejecting groups of CAN messages (frames), thereby reducing the processing load of the host.

An *acceptance mask* defines the bit positions in the frame that are relevant for the comparison (0 is relevant, 1 is not). For a frame to be accepted, all relevant received bits must match the corresponding bits in the *acceptance code*. Note that if a bit in the frame ID does not match the corresponding acceptance code bit, the frame may still be accepted if that bit position is marked as not relevant in the acceptance mask and all other acceptance criteria are met.

For each bit, if (((ID==code) OR mask) == 1), then the frame is accepted.

In Basic (standard) Mode, only the eight most significant bits of the 11-bit identifier are checked when filtering the frame. The three least significant bits are ignored. If the eight most significant bits meet the acceptance criteria, the frame will be accepted.

In Extended Mode, frames may contain 29-bit or 11-bit identifiers. In either case, all bits of the identifier that are marked as relevant are checked.

Example 1, Basic Frame, 11-bit filtering:

When a port is configured for Basic Mode, i.e., CAN 2.0A, frames will contain 11-bit identifiers. However, the SJA1000 Acceptance Code Register (ACR) and Acceptance Mask Register (AMR) are only eight bits wide. Therefore, only the eight MSBs of a frame are considered for filtering.

In the following example, frames where ID bits 10:9 and 5:3 match ACR bits 7:6 and 2:0 will be accepted. ID bits 8:6 are not relevant (corresponding mask bit set to 1) and ID bits 2:0 are not considered for filtering.

	MSE	З									LSB
ACR/ACM Reg. Bit No.	7	6	5	4	3	2	1	0			
Acceptance Code	0	1	1	1	0	0	1	0			
Acceptance Mask	0	0	1	1	1	0	0	0			
Accepted Frames	0	1	x	x	x	0	1	0	x	x	x
Frame ID Bit No.	10	9	8	7	6	5	4	3	2	1	0

x - indicates don't care

Example 2, Extended Frame, 11-bit filtering:

When a port is configured for Extended Mode, i.e., CAN 2.0B, frames may contain either 29-bit or 11-bit identifiers. In Extended Mode, the SJA1000 provides four 8-bit wide ACRs and AMRs (ACR0:3 and AMR0:3). For frames with 11-bit identifiers, the 11 most significant bits of the identifier are filtered using ACR0/AMR0 and the upper 4 bits of ACR1/AMR1 (including the RTR bit).

In the following example, frames where ID bits 10:9, 5:3, and 1:0 match the corresponding ACR bits will be accepted. ID bits 8:6, 2, and the RTR bit are not relevant (corresponding mask bit set to 1).

n	0	1 (4 MSBs)	2	3		
ACRn	01XX X010	x10x	XXXX XXXX	XXXX XXXX		
AMRn	0011 1000	1001	1111 1111	1111 1111		
Accepted Frames	01xx x010	x10x				
(ID.10ID.0, RTR)						

X - irrelevant

x - indicates don't care, only the upper 4 bits of ACR1 and AMR1 are used

Example 3, Extended Frame, 29-bit filtering:

For frames with 29-bit identifiers, the 29 bits are filtered using ACR0:2/AMR0:2 and the upper 6 bits of ACR3/AMR3 (including the RTR bit).

In the following example, frames where ID bits 28:14, 12:9, and 4:0 match the corresponding ACR bits will be accepted. ID bits 13, 8:5, and the RTR bit are not relevant (corresponding mask bit set to 1).

n	0	1	2	3 (6 MSBs)
ACRn	1011 0100	1011 000x	1100 XXXX	0011 0XXX
AMRn	0000 0000	0000 0001	0000 1111	0000 0111
Accepted Frames	1011 0100	1011 000x	1100 жжжж	0011 0x
(ID.28ID.0, RTR)				

X - irrelevant

x - indicates don't care, only the upper 6 bits of ACR3 and AMR3 are used

See Section 4.17.1 for information on filtering frames using the UeiDaq Framework (High-level API).

See Section 5.4.5.1 for information on filtering frames using the Low-level API.

Additional information for defining the acceptance code and mask can be found on the NXP website in the Application Note document for the SJA1000 Stand-alone CAN Controller starting at page 18.

https://www.nxp.com/docs/en/application-note/AN97076.pdf

2.6 Indicators and Connectors Figure 2-14 shows the locations of the LEDs and connectors on the DNx-MF-102. The LED indicators are described below in Table 2-2.

Figure 2-14 Photo of DNR-MF-102 Board

Table 2-2 LED Indicators

LED Name	Description
RDY	READY: board is powered up and operational
STS	STATUS: OFF: Configuration mode (e.g. configuring channels, running in Point-by-Point mode) ON: Operation mode (e.g. running in DMap or VMap mode)

2.7 Pinout Figure 2-15 illustrates the pin configuration for the DNx-MF-102 board. Connections are made through a standard DB-62 female connector.

Signals are isolated in the following groups:

- Analog I/O (in blue): Aln returns on AGnd, AOut 0 returns on AGnd 0, and AOut 1 returns on AGnd 1. Refer to **Table 2-3**.
- Industrial DIO (in red): referenced to DGnd. Refer to **Table 2-4**.
- TTL DIO and Serial (in black): referenced to TTL/RS Gnd. Refer to **Table 2-5**.
- CAN0 (in green): referenced to CAN0 Gnd. Refer to **Table 2-5**.
- CAN1 (in purple): referenced to CAN1 Gnd. Refer to **Table 2-5**.

	-				
	21				1 SHIELD
	• • • • • • • •				•
42			•••••		22
	62				43
Pin	Signal	Pin	Signal	Pin	Signal
1	RTS232/TX485+	22	TX232/TX485-	43	CTS232/RX485-
2	TTL DOut 1	23	TTL/RS Gnd	44	RX232/RX485+
3	TTL DIn 1	24	+5V-TTL	45	TTL DOut 0
4	DIO-02	25	DGnd	46	TTL DIn 0
5	DIO-00	26	DV 0-3	47	DIO-03
6	DIO-06	27	DGnd	48	DIO-01
7	DIO-04	28	DV 4-7	49	DIO-07
8	DIO-10	29	DGnd	50	DIO-05
9	DIO-08	30	DV 8-11	51	DIO-11
10	DIO-14	31	DGnd	52	DIO-09
11	DIO-12	32	DV 12-15	53	DIO-15
12	CAN-L1	33	CAN1 Gnd	54	DIO-13
13	CAN-H1	34	CAN0 Gnd	55	CAN-L0
14	AGnd 1	35	AOut 1	56	CAN-H0
15	AGnd 0	36	AOut 0	57	Aln 3/1-
16	Aln 1/0-	37	Aln 0/0+	58	Aln 2/1+
17	Aln 5/2-	38	Aln 4/2+	59	AGnd
18	Aln 7/3-	39	Aln 6/3+	60	AGnd
19	Aln 9/4-	40	Aln 8/4+	61	Aln 11/5-
20	Aln 13/6-	41	Aln 12/6+	62	Aln 10/5+
21	Aln 15/7-	42	Aln 14/7+		

Figure 2-15 Pinout Diagram for DNx-MF-102

No Hot Swapping!

Before plugging any I/O connector into the Cube or RACKtangle, be sure to remove power from all field wiring. Failure to do so may cause severe damage to the equipment.

If you design your own cables, we recommend separating the five isolated groups (analog I/O, industrial DIO, TTL/Serial, and two CAN groups) using dedicated wiring and shielding.

	Pin Name	Pin #	Description
	AGnd	59-60	Ground for analog inputs
alog In	Aln n/m+	37-42, 58, 62	Single-ended channel n or positive terminal of differential analog input channel m. Ground any unused pins
An	Aln n/m-	16-21, 57, 61	Single-ended channel n or negative terminal of differential analog input channel m. Ground any unused pins
nt	AOut n	35-36	Signal pin for analog output channel n
Analog O	AGnd n	14-15	Ground for analog output channel n. AGnd, AGnd 0, and AGnd 1 are internally connected, but AGnd 0/1 are matched to AOut 0/1 respectively on the PCB to minimize noise and voltage drops across the outputs

Table 2-3 Analog I/O Pin Descriptions

Table 2-4 Industrial Digital I/O Pin Descriptions

	Pin Name	Pin #	Description
DIO	DIO-n	4-11, 47-54	Signal pin for FET-based industrial digital I/O channel n.
ustrial	DV n-m	26, 28, 30, 32	User-supplied Vcc for DIO channels n-m. Up to 4 different Vcc's can be supplied to the port in blocks of 4 channels
Indu	DGnd	25, 27, 29, 31	Ground for industrial DIO port

Table 2-5 Logic-level Digital I/O and Comm Port Pin Descriptions

	Pin Name	Pin #	Description						
0	TTL DIn n	3, 46	Signal pin for TTL input r	I					
Г	TTL DOut n	2, 45	Signal pin for TTL output	Signal pin for TTL output n					
F	+5V-TTL	24	Provides a constant +5 V with max output current 20 mA						
	CAN-Hn	13, 56	Dominant High line for C	AN port n					
CAN	CAN-Ln	12, 55	Dominant Low line for CA	Dominant Low line for CAN port n					
•	CANn Gnd	33-34	Ground for CAN port n						
			RS-232	RS-422 full duplex	RS-485 half-duplex				
a	RTS232/TX485+	1	Request to Send (RTS)	Send (Tx+)	Data (+)				
Seri	TX232/TX485-	22	Send (Tx)	Send (Tx-)	Data (-)				
	CTS232/RX485-	43	Clear to Send (CTS)	Receive (Rx-)	n/a				
	RX232/RX485+	44	Receive (Rx)	Receive (Rx+)	n/a				
	TTL/RS Gnd	23	Ground for TTL DIO and	Serial					

- **2.8 Wiring** The following wiring schemes are recommended when connecting external devices to the DNx-MF-102.
- 2.8.1 Analog Input Wiring The recommended approach for analog input wiring depends on if the signal source is grounded or floating. Grounded signals are connected to the earth, such as signal generators or an RTD bridge circuit powered by a desktop power supply. Floating signals are isolated from the earth; examples include thermocouples, batteries, or instruments with isolated outputs.

Figure 2-16 Analog Input Wiring

- 2.8.1.1 Grounded Signals As shown in Figure 2-16, all grounded signals should have the signal source ground wired directly to AGnd on the DNx-MF-102. All Aln pins are measured relative to the same AGnd. In differential mode, the Aln+ and Aln- inputs are referenced to AGnd and then subtracted to remove voltages common to both channels.
- **2.8.1.2**Floating
SignalsGenerally speaking, floating differential inputs should have AIn- connected to
AGnd via a resistor. If there is no connection to AGnd, the input voltages may
float to a value that exceeds the amplifier's common mode range.

Figure 2-17 Improper Analog Input Wiring

A resistor between 10 k Ω < R < 100 k Ω is small enough to provide a path to ground for input bias current, while large enough to allow Aln- to float relative to the voltage reference. The external resistor may be disregarded if the 1/8th divider is turned ON; this scales down input voltages to be safely within the common mode range.

NOTE: Unused AIn pins should be tied to ground. This can be done internally by enabling the 1/8th divider on unused channels. Disconnected AIn pins will cause the PGA to saturate, which can lead to incorrect readings on subsequent channels in the multiplexer scan list. Other unused pins on the board may be left disconnected.

2.8.2 Industrial Digital Output Wiring

When using the industrial digital output subsystem, ensure that DVcc is connected to the user's power supply (0-55 VDC). A disconnected DVcc will not damage the DNx-MF-102 but may cause unexpected digital input readings as the outputs switch ON/OFF.

A load may be wired to the output in any of the following configurations:

- **Push Mode:** DNx-MF-102 acts as a switch between DVcc and the output, sourcing current to the load when the switch is on. An example circuit is shown in **Figure 2-18**a.
- **Pull Mode:** DNx-MF-102 acts as a switch between the output pin and DGnd, sinking current from the load when the switch is on. An example circuit is shown in **Figure 2-18**b.
- Push-Pull Mode: DNx-MF-102 connects the output to either DVcc or DGnd, never both at the same time. An example dual-channel circuit is shown in Figure 2-18c. Current flows through the solenoid when one channel is set HIGH and the other channel is set LOW. The current is easily reversed by inverting the outputs.

Note that the diagrams in **Figure 2-18** include an optional external anti-kickback/ flyback diode. UEI recommends adding the diode when driving inductive loads such as relays or solenoids. Without the diode, a large voltage spike can occur across the inductive load when its supply current is suddenly shut off, potentially damaging the FET switch inside the DNx-MF-102. The anti-kickback diode provides an alternate path for the current and clamps the voltage spike to a safe value.

The diode in Push Mode or Pull Mode can be a general purpose diode rated to handle the steady-state current through the inductor and the desired switching speed. Connect the Push Mode or Pull Mode diode parallel to the load.

In Push-Pull Mode, we suggest using a bidirectional transient-voltagesuppression (TVS) diode such as the P6KE68CA. Connect the TVS diode from the FET line to Gnd.

c.) Push-Pull Mode (H-Bridge Configuration)

Figure 2-18 Industrial Digital Output Wiring

- **2.8.3 Serial Port** The DNx-MF-102 may be wired according to either RS-232, RS-422, or RS-485 standards.
- **2.8.3.1 RS-232** In **Figure 2-19**, the DNx-MF-102 is wired to an external RS-232 device with optional CTS and RTS lines for flow control. All lines are measured relative to Gnd.

Figure 2-19 RS-232 Wiring

2.8.3.2 RS-422/485 Full Duplex In **Figure 2-20**, the board is connected as a master in a RS-485 full duplex network. This configuration is also compatible with RS-422. Because signals are measured differentially, the + and - wires are twisted together (e.g., Rx+ and Rx-) so that noise affects the pair equally. The far ends of the cables typically require a termination resistor, shown as 120 Ω resistors in **Figure 2-20**. Otherwise, signal reflections off of the unterminated ends could interfere with the incoming signal and corrupt the data. The DNx-MF-102 provides an on-chip 91 Ω terminator that can be enabled for RS-422/485 modes.

As usual, Gnd should be connected to the reference of each external device.

Figure 2-20 RS-422 and RS-485 Full Duplex Wiring

2.8.3.3 RS-485 Half Duplex Figure 2-21 shows the wiring for a RS-485 half-duplex network. In RS-485 halfduplex mode, the Rx+ and Rx- pins on the DNx-MF-102 are left open because Tx and Rx are connected internally. If an external device on the network does not have an internal Tx/Rx connection, Tx+ should be wired to Rx+ and Txwired to Rx-. This external Tx/Rx wiring is not required on the DNx-MF-102. As with full-duplex mode, the wire pair should be twisted together and termination resistors added as needed.

Figure 2-21 RS-485 Half Duplex Wiring

2.8.4CAN Bus
WiringAs shown in Figure 2-22, the ISO 11898 bus consists of two wires, terminated at
both ends by resistors.

CAN devices (nodes) connect their CAN_L and CAN_H lines to the two-wire CAN bus. A node transmits by sending the signal (HIGH or LOW) on CAN_H and the inverse of the signal on CAN_L. Only the two nodes at each the end of the bus must have a terminating resistor (100-130 Ω). The terminating resistors remove signal reflection at the end of the bus and balance the DC voltage levels.

Figure 2-22 CAN Nodes Connected to a CAN Bus using Standard 120 Ω Termination

The bus cable length should not exceed 40 m (131 ft) at 1 Mbps, or 1000 m (3280 ft) at 50 kbps due to the cable propagation delay (5 ns/m).

For cables longer than 1 m (3.28 ft), noise may cause timeouts when using non-twisted-pair cabling; if you experience difficulty, use twisted-pair cabling.

Chapter 3 PowerDNA Explorer

This chapter provides the following information about exploring the DNx-MF-102 with the PowerDNA Explorer application.

- Introduction (Section 3.1)
- Analog Input (Section 3.2)
- Analog Output (Section 3.3)
- Industrial Digital Input (Section 3.4)
- Industrial Digital Output (Section 3.5)
- RS-232/422/485 Port (Section 3.6)
- CAN Port (Section 3.7)
- Counter/Timer (Section 3.8)
- Logic-Level DIO (Section 3.9)
- **3.1 Introduction** PowerDNA Explorer is a GUI-based application for communicating with your RACK or Cube system. You can use it to start exploring a system and individual boards in the system. PowerDNA Explorer can be launched from the Windows startup menu:

Start » All Programs » UEI » PowerDNA » PowerDNA Explorer

The DNx-MF-102 is supported in PowerDNA version 5.2.0.11+.

When using PowerDNA Explorer to configure DNx-MF-102 boards, resetting the IOM or changing the DNx-MF-102 configuration outside of PowerDNA Explorer (e.g., via C code or Labview) is not recommended; PowerDNA Explorer will not display changed parameters until **Scan Network** or **Reload Configuration** is clicked again (see **Figure 3-1** below for button locations).

Scan Network	Reload Configuration
RowerDNA Explorer	
<u>File</u> Edit <u>N</u> etwork Vi	ew <u>H</u> elp
Host PC F IOM-229577 OJ MF-102	Model: MF-102 Info: MF, 8 subsystems SN: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num.: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Analog Input Input Range: ±80 V ▼ Moving Average: 1 ▼ Use Differential Mode For All Channels Name Differential Value

Figure 3-1 PowerDNA Explorer for DNx-MF-102

When the DNx-MF-102 is selected in the left-hand panel, the right-hand panel contains a tab for each subsystem:

- AI: read analog inputs
- AO: configure analog outputs and read diagnostic ADCs
- DI: read digital inputs and diagnostic ADCs
- DO: configure industrial digital outputs, including PWM
- Serial: send and receive RS-232/422/485 messages
- CT: configure counter/timer sources and counting modes
- TTL: configure TTL digital outputs and read input port
- CAN: send or receive data over the CAN ports
- **NOTE:** PowerDNA Explorer only supports basic DNx-MF-102 functionality, and only one subsystem can be active at any given time. Refer to Chapter 4, "Programming with High-level API" or Chapter 5, "Programming with Low-level API" in order to access additional features and to use multiple subsystems simultaneously.

- **3.2** Analog Input To explore the analog input subsystem, select the AI tab (Figure 3-2) and click the Enable Analog Input button.
- **3.2.1 Configure AI** The following settings apply to all 16 analog input channels:

Subsystem

- **Input Range**: programs the gain and voltage divider to achieve the selected range (refer to **Table 4-2**).
- **Moving Average**: sets the number of samples used for the moving average. You must store the configuration for the new moving average to take effect. To save the configuration, click **Store Configuration**.
- Use Differential Mode for All Channels: configures all channels to differential mode.
- **3.2.2 Read AI Data** To start data acquisition, click the **Read Input Data** button. The channel table contains the following columns:
 - AInX: read-only display of the channel number.
 - Name: a name or note that you wish to give to the channel.
 - **Differential**: sets a channel pair to differential mode. As shown in **Figure 3-2**, only the checkboxes corresponding to the even numbered analog input channels can be selected. When the Differential checkbox for an even numbered channel is selected, the Value field for the corresponding odd numbered channel is cleared.
 - **Value**: displays the analog input data in volts. This field is cleared for odd numbered channels when the corresponding even numbered channel has its Differential checkbox selected.
 - **NOTE:** If the range is set to [-10, 10], [-2.5, 2.5], [-0.625, 0.625], or [-0.15625, 0.15625] (i.e., divider is disabled), ensure that all unused Aln pins are wired to AGnd.

Store Configuration	Read Input Data								
S PowerDNA Explorer									
File Edit Network View Help									
Host PC	Model: MF-102								
	Info: MF, 8 subsystems								
[0] MF-102 S/N: 1357279									
	Mfg. Date: Jun 21 2024								
	Cal Date: Oct 7 2024								
	Logic Vor: 02 15 94								
	Dev Num () Clot 1								
	✓ Modifiable								
	AL AO DI DO Serial TTL Counter/Timer CAN								
	Al AO DI DO Senai ITE Counterrinnei CAN								
	Enable Anales Insut								
	Enable Analog input								
	Input Pangor +40 V								
	input Range. ±10 v								
	Woving Average. o								
	Use Differential Mode For All Channels								
	Name Differential Value								
	Aln0 Analog Input 0 🗹 1.9999								
	Aln1 Analog Input 1								
	Aln2 Analog Input 2 -1.9999								
	Ain4 Analog Input 4 4.9994								
	Alla6 Analog Input 6 2.9995								
	Aln8 Analog Input 8 4 9994								
	Aln9 Analog Input 9 2.9995								
	Aln10 Analog Input 10 2.9995								
	Aln11 Analog Input 11 4.9994								
	Aln12 Analog Input 12 🖌 1.9998								
	Aln13 Analog Input 13								
	Aln14 Analog Input 14 -1.9997								
	Ain15 Analog Input 15								

Figure 3-2 PowerDNA Explorer AI Tab

- **3.3** Analog
OutputTo explore the analog output subsystem, select the AO tab and click the Enable
Analog Output button.
- **3.3.1 Write AO Data** The AO Output subtab (**Figure 3-3**) contains the following:
 - **Output Range**: sets the voltage or current range for both channels. When you select a new range, the output value automatically reconfigures to midrange.
 - AOutX: read-only display of the channel number.
 - Name: a name or note that you wish to give to the channel.
 - Value: slider and numeric text field for setting the voltage or current of the corresponding output channel. The valid value range is shown in the **Output Range** display. The output value is written instantaneously when the slider is released or after pressing **Enter** in the numeric field.

RowerDNA Explorer	
<u>File Edit Network View H</u> elp	
Host PC ←	Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num.: 0, Stot 3 ✓ Modifiable Al A0 DI DO Serial TTL Counter/Timer CAN Enable Analog Output Output Range: ±5 V Guardian Output AOut0 Analog Output 1 AOut1 Analog Output 1

Figure 3-3 PowerDNA Explorer AO Tab, Output Subtab

3.3.2Read AOThe AO Guardian subtab (Figure 3-4) provides access to diagnostic ADC data
for both output channels. To read the Guardian diagnostic values, click the Read
Input Data button.

The Guardian subtab contains the following columns:

- AInX: read-only display of the analog output channel number.
- Name: a name or note that you wish to give to the channel.
- Temp (C): DAC temperature
- Vsense+ (V): Voltage on AOutX
- Vsense- (V): Voltage on AGndX
- Vdpc+ (V): Supply voltage

	Read In	put Data					
RowerDNA Explorer							
<u>File Edit Network View Help</u>							
1 I 🔁 🔂 🖻 13							
■ Host PC	Model: M Info: M S/N: 13 Mfg. Date: Ju Cal. Date: N Logic Ver.: 02 Dev. Num.: 0, Modifiable AI AO Enable A Output Ran Guardian AIn1	F-102 F, 8 subsystems 357279 In 21, 2024 ov 30, 0002 2.15.84 Slot 3 DI DO Serial Analog Output I Output Analog Output 0 Analog Output 1	TTL Counter Temp (C) 50.2 50.38	Vsense+ (V) 2.53 0.01	Vsense- (V) 0.01 0.01	Vdpc+ (V) 14.94 14.95	

Figure 3-4 PowerDNA Explorer AO Tab, Guardian Subtab

3.4 Industrial Digital Input

To explore the industrial digital input subsystem, open the DI tab (**Figure 3-5**) and click the **Enable Digital Input** button.

Click Read Input Data to start data acquisition.

The DI tab contains the following settings and displays:

- **0 Level**: slider and numeric text field for setting the logic level low threshold (between 0 to 55 V). The logic level changes from 1 to 0 when the input voltage transitions below the 0 Level. Click **Store Configuration** for the changes to take effect.
- **1 Level**: Slider and numeric text field for setting the logic level high threshold (between 0 to 55 V). The logic level changes from 0 to 1 when the input voltage transitions above the 1 Level. Click **Store Configuration** for the changes to take effect.
- **DINX**: read-only display of the channel number.
- Name: a name or note that you wish to give to the channel.
- Guardian: displays the voltage data from the channel's ADC.
- **State**: displays the current state of the channel. This state is determined by comparing the ADC voltage to the configured 0 Level and 1 Level.
- State Debounced: displays the debounced state of the channel. This logic level must have held steady over the number of samples defined in the "Debouncer" column. Click Store Configuration for the changes to take effect.
- **Debouncer**: numeric text field to set the debouncing interval for the channel. This is the number of ADC samples required for a debounced state change (max 65535).

	Read I	nput Data				
C PowerDNA Explorer						
File Edit Network View He	elp					
Host PC	Model:	MF-102				
TOT ME 402	Info:	MF, 8 subsystem	S			
[0] MF-102	S/N:	1357279				
	Mfg. Date:	Jun 21, 2024				
	Cal Date:	Nov 30, 0002				
		02 15 94				
	Logic Ver.	0.01+12				
	Dev. Num.:	0, 51013				
	Modifiat	ble				
				Counter/Timer	CAN	
				Counter/Timer	CAN	
	Enable	e Digital Input				
	Enable 0 Level: 1 Level:	e Digital Input	2	.0 V .0 V		
	Enable 0 Level: 1 Level:	e Digital Input	2	.0 V .0 V State	State Debounced	Debouncer
	Enable 0 Level: 1 Level: Din0	e Digital Input	2 4 	0 V 0 V State 0	State Debounced	Debouncer 0
	Enable 0 Level: 1 Level: Din0 Din1	e Digital Input	2 4 	.0 V .0 V State 0 0	State Debounced 0 0	Debouncer 0 0
	Enable 0 Level: 1 Level: Din0 Din1 Din2	e Digital Input	Guardian -0.0180V -0.0084V 25.1268V	0 V 0 V State 0 0 1	State Debounced 0 0 1	Debouncer 0 0 0
	Enable 0 Level: 1 Level: Din0 Din1 Din2 Din3	e Digital Input	Guardian -0.0180V -0.0084V 25.1268V -0.0180V	0 V 0 V 5 State 0 0 1 0	State Debounced 0 0 1 0	Debouncer 0 0 0 0
	Enable 0 Level: 1 Level: Din0 Din1 Din2 Din3 Din4 Din5	e Digital Input	Guardian -0.0180V -0.0084V 25.1268V -0.0180V -0.0180V -0.0180V	0 V 0 V 5tate 0 0 1 0 0 0	State Debounced 0 0 1 0 0 0	Debouncer 0 0 0 0 20
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5	e Digital Input	2	0 V 0 V 0 V 0 0 0 1 0 0 0 0	State Debounced 0 1 0 0 0 0 0 0 0 0 0 0 0 0	Debouncer 0 0 0 0 20 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7	e Digital Input	2	0 V 0 V 0 V 0 0 0 0 0 0 0 0 0	State Debounced 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Debouncer 0 0 0 0 20 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn8	e Digital Input	2 4 0.0180V 0.0180V 0.0180V 0.0180V 0.0180V 0.0180V 0.0180V 0.0180V	.0 V .0 V State 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0 1 0	Debouncer 0 0 0 0 20 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn7 DIn8 DIn9	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V	.0 V .0 V State 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0 0 1 0	Debouncer 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn7 DIn8 DIn9 DIn10	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V	0 V 0 V State 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	Debouncer 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn6 DIn7 DIn8 DIn9 DIn10 DIn11	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V 24.8967V -0.0180V 24.8967V -0.0180V	0 V 0 V State 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0	Debouncer 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn8 DIn9 DIn9 DIn10 DIn11 DIn12	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V 24.8967V -0.0180V 24.8967V -0.0180V	0 V 0 V State 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0	Debouncer 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: DIn0 DIn1 DIn2 DIn3 DIn4 DIn5 DIn6 DIn7 DIn8 DIn9 DIn9 DIn10 DIn11 DIn12 DIn13	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V 24.8967V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V -0.0180V	0 V 0 V State 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0	Debouncer 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
	Enable 0 Level: 1 Level: Din0 Din1 Din2 Din3 Din4 Din5 Din6 Din7 Din8 Din9 Din10 Din10 Din11 Din12 Din13 Din13 Din13 Din14	e Digital Input	2 Guardian -0.0180V -0.0084V 25.1268V -0.0180V -0.0084V -0.	0 V 0 V State 0 0 0 0 0 0 0 0 0 0 0 0 0	State Debounced 0	Debouncer 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-5 PowerDNA Explorer DI Tab

- **3.5** Industrial To explore the industrial digital output subsystem, open the DO tab and click the **Digital Output Enable Digital Output** button.
- **3.5.1 Configure** The DO PWM subtab (**Figure 3-6**) configures the following output channel properties:
 - **PWM Period**: the period of the pulse-width modulated output in microseconds. Type in a number between 5 and 254,200, press the **Enter** key, and click the **Store Configuration** button.
 - **DOutX**: read-only display of the channel number.
 - Name: a name or note that you wish to give to the channel.
 - Mode: one of the following PWM modes:
 - PWM Disabled: disables PWM on the output channel
 - PWM Output: enables PWM on the output channel
 - **Soft-Start**: When Output is switched from LOW to HIGH, the duty cycle gradually increases from 0% to the percentage specified in the Duty Cycle column over the specified Duration.
 - **Soft-Stop**: When Output is switched from HIGH to LOW, the duty cycle gradually decreases from the percentage specified in the Duty Cycle column to 0% over the specified Duration.
 - **Push/Pull:** one of the following modes:
 - Off: No push-pull setting
 - Push: act as sourcing switch
 - Pull: act as sinking switch
 - **Push-pull:** connect as both push and pull, but never at same time (circuit shown in **Figure 2-18**c)
 - **Duty Cycle (%)**: Defines the duty cycle for "PWM Output" mode and the soft start and soft stop modes.
 - **Duration (ms)**: Defines the duration of the full "Soft-Start" or "Soft-Stop" cycle in milliseconds. This duration should be set longer than the PWM period.

🔍 PowerDNA Explorer							- 🗆 X
File Edit Network View Help							
(Image: Host PC	Model: 1 Info: 1 S/N: - Mfg. Date: . Cal. Date: 1 Logic Ver.: (Dev. Num.: (☑ Modifiabi AI AO Enable PWM Peri	MF-102 MF, 8 subsystems 1357279 Jun 21, 2024 Nov 30, 0002 12, 15, 84 0, Stot 3 e DI DO Seria Digital Output od 100000 µs	I │ TTL │ Counter/Tim	er CAN			
	PVVW	Output					
		Name	Mode	Push/Pull	Duty Cycle (%)	Duration (ms)	
	DOut0	Digital 0	PWM Output	Push/Pull	50.00	0	
	DOut1	Digital 1	PWM Disabled	Off	50.00	0	
	DOut2	Digital 2	PWM Output	Off	50.00	0	
	DOut3	Digital 3	Soft-Start	Off	50.00	0	
	DOut4	Digital 4	Soft-Stop	Off	50.00	0	
	DOut5	Digital 5	PWM Disabled	Off	50.00	0	
	DOut6	Digital 6	PWM Disabled	Off	50.00	0	
	DOut7	Digital 7	PWM Disabled	Off	50.00	0	
	DOut8	Digital 8	PWM Disabled	Off	50.00	0	
	DOut9	Digital 9	PWM Disabled	Off	50.00	0	
	DOut10) Digital 10	PWM Disabled	Off	50.00	0	
	DOut11	Digital 11	PWM Disabled	Off	50.00	0	
	DOut12	2 Digital 12	PWM Disabled	Off	50.00	0	
	DOut13	B Digital 13	PWM Disabled	Off	50.00	0	
	DOut14	Digital 14	PWM Disabled	Off	50.00	0	
	DOut15	5 Digital 15	PWM Disabled	Off	50.00	0	

Figure 3-6 PowerDNA Explorer DO Tab, PWM Subtab

- **3.5.2 Write to Digital** The DO Output subtab (**Figure 3-7**) contains the following columns:
 - Output
- **Ch X**: read-only display of the channel number.
- Name: a name or note that you wish to give to the channel.
- **High**: sets the output state to 1 (high-side FET turned on, low-side FET turned off)
- Low: sets the output state to 0 (high-side FET turned off, low-side FET turned on)
- Tri: configures the channel as input-only (both FETs turned off)

🔍 PowerDNA Explorer	
<u>File Edit N</u> etwork <u>V</u> iew <u>H</u> elp	
Host PC Model: MF-102 IOM-229577	
Info: MF, 8 subsystems	
S/N: 1357279	
Mig. Date: Jun 21, 2024	
Cal. Date: Nov 30, 0002	
Logic Ver. U2.15.84	
Dev. Num.: 0, Stot 3	
Modilighie	
AI AO DI DO Serial TTL Counter/Timer CAN	
Enable Digital Output	
DWM Deried 5000 up	
PWM Output	
Name High Low Tri	
Ch 3 Digital 3	
Ch 4 Digital 4	
Ch 5 Digital 5	
Ch 6 Digital 6	
Ch 7 Digital 7	
Ch 8 Digital 8	
Ch 9 Digital 9	
Ch 10 Digital 10	
Ch 11 Digital 11	
Ch 12 Digital 12	
Ch 13 Digital 13	
Ch 14 Digital 14	
Ch 15 Digital 15	

Figure 3-7 PowerDNA Explorer DO Tab, Output Subtab

- **3.6**RS-232/422/
485 PortTo explore the RS-232/422/485 subsystem, open the serial tab and click Enable
Serial.**3.6**RS-232/422/
Serial.
- **3.6.1 Configure** The Configuration subtab (**Figure 3-8**) contains the following settings: **Serial Port Mode:** Configures the port mode to RS 232, RS 485 Full Dupl
 - **Mode**: Configures the port mode to RS-232, RS-485 Full Duplex (compatible with RS-422), or RS-485 Half Duplex.
 - **Baud**: Sets the baud rate in bits per second (bps). The minimum supported value is 300 bps. RS-232 mode supports rates up to 256 kbps, while RS-422/485 mode supports rates up to 2 Mbps.
 - **Parity**: Sets the parity bit to None, Even Parity, or Odd Parity.
 - Data Bits: Sets the number of data bits transferred with each frame.
 - Stop Bits: Sets the number of STOP bits.
 - Break Enabled: Holds the TX line at logic low.
 - **Loopback Enabled**: Connects RX and TX internally and disables external signals.
 - **Timeout**: Defines the timeout period in milliseconds when no data is seen on the RX line
 - **Terminate Messages By String**: A Read stops after this string has been found.

Press the Enter key after typing numerical inputs and click **Store Configuration** to write settings to hardware.

Click the **Start Bus** button to enable the serial port.

NOTE: If you change the port configuration, new settings do not take effect until you stop and restart the bus.

Store C	onfiguration
1	
RowerDNA Explorer	
<u>File Edit Network View H</u> elp	
Host PC ↓ OM-229577 ↓ @ IOJ MF-102	Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Configuration Send/Receive Mode: RS-232 Baud: 57600 Parity: None ▼ Data Bits: 8 ▼ Start Bus Impose: Terminate Messages By String:

Figure 3-8 PowerDNA Explorer Serial Tab, Configuration Subtab

- **3.6.2** Send/Receive The Send/Receive subtab (Figure 3-9) sends/receives either ASCII or Hex characters, as selected in the "Format" dropdown menu.
 - **To Send Data**: Type either an ASCII string or Hex characters (separated by a space) into the text field next to the **Send** button. Click **Send** to write the data to the TX FIFO.
 - To Receive Data: The "Bytes Requested" field sets the number of bytes to request from the RX FIFO. This value takes effect immediately. Click Read Input Data and view the received messages in the display. If the RX FIFO has less data than requested, or if the termination string is encountered, the returned message will be filled in with 0x00. The Clear button clears the message display.

Figure 3-9 shows the results of a simple loopback test. In this example, Loopback is enabled, three bytes of data are written to the TX FIFO, and two bytes of data are requested from the RX FIFO per read.

	Read Input Data	
ReverDNA Explorer		– 🗆 X
<u>File Edit Network View Help</u>		
Host PC IOM-229577 IOM F-102	Model: MF-102 Info: MF, 8 subsystems S.N: 1357279 Mfg. Date: Jun 21, 2024 Cat. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num: 0. Stot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Serial Stop Bus Configuration Send/Receive Format: Hex Bytes Requested: 10 Clear 19 84 42 00 19 84 42	

Figure 3-9 PowerDNA Explorer Serial Tab, Send/Receive Subtab

- **3.7 CAN Port** To explore the CAN subsystem, open the CAN tab and click **Enable CAN**.
- **3.7.1 Configure** CAN Port The Configuration subtab (Figure 3-10) contains the following settings for each of the DNx-MF-102 CAN ports:
 - **Speed**: Sets the data transfer rate in kilobits per second (kbps). The minimum supported rate is 50 kbps. The maximum is 1 Mbps.
 - **Mode**: Configures the CAN port mode to use Basic frames with 11-bit identifiers or Extended frames with 29-bit identifiers.
 - Accept Mask: Sets a mask for filtering frames by applying the mask to the frame's identifier. Each bit in the mask indicates if the corresponding bit in the identifier is relevant (0) or not relevant (1). The Accept Mask is used in conjunction with the Accept Code. Note that in Basic Mode, the 8-bit Accept Mask is applied to the 8 most significant bits of the 11-bit identifier. The 3 least significant bits are not filtered in Basic Mode.
 - Accept Code: The relevant Accept Code bits (as specified in the Accept Mask) are compared to the corresponding bits in the frame's identifier. The frame is accepted if the relevant bits match. In Basic mode, the comparison only applies to the 8 most significant bits of the 11-bit identifier.
 - Listen only: Configures the port as a passive CAN monitor. There is no acknowledgment of incoming frames. Listen Only is only supported in extended mode.

Press the Enter key after typing numerical inputs and click **Store Configuration** to write settings to hardware.

Click the **Start Bus** button to enable the CAN port.

NOTE: If you change the port configuration, new settings do not take effect until you stop and restart the bus.

Deves DNA Evelope	
PowerDINA Explorer	
File Edit Network View Help	
Image: Control of the second state	

Figure 3-10 PowerDNA Explorer CAN Tab, Configuration Subtab

- **3.7.2** Send/Receive Data The Send/Receive subtab (Figure 3-11) provides the ability to send hex characters out the Sending Port and receive hex characters using the Monitor Port.
 - **To Send Data**: Enter a binary ID in the ID field and up to eight hex bytes (separated by a space) in the Data field. Click **Send** to write the data to the TX FIFO.
 - **To Receive Data**: Click **Read Input Data** and view the received messages in the display. If the received data contains less than eight bytes, the returned message will be padded with 0x00 values. The **Clear** button clears the message display.

Figure 3-11 shows the results of a simple loopback test. In this example, three bytes of data are sent out the Sending Port. The received data is displayed in the field for the Monitor Port with and padded as needed with 0x00.

Figure 3-11 PowerDNA Explorer CAN Tab, Send/Receive Subtab

- **3.8 Counter/** To explore the counter/timer modules, open the CT tab and click **Enable Counter/Timer**.
- **3.8.1 Configure Count Mode and Sources**The DNx-MF-102 includes two independent counter/timer modules. Counter/ timer configuration and operation depends on the selected mode. PowerDNA Explorer supports the following modes:
 - **Quadrature**: counts pulses on the external Input. The count increases or decreases depending on the Gate signal. (Section 3.8.2)
 - **Bin Counter**: counts pulses on the external input over a 1 second interval. (Section 3.8.3)
 - **PWM Output**: generates a square wave on the Output. (Section 3.8.4)
 - **Frequency**: measures the frequency of the external Input over a userconfigured time interval. (Section 3.8.5).

You can route the counter's Gate, Input, and Output lines to any FET-based DIO or TTL DIO source listed in the dropdown menu. Click **Store Configuration** to program the source settings in hardware.

NOTE: When using FET-based sources as the Input or Gate, always configure digital input levels on the DI tab (Section 3.4) and click **Read Input Data** to enable the DI ADC.

3.8.2 Quadrature Mode Quadrature Mode counts pulses on the Input Source. The count increases or decreases depending on the Gate Source. Output Source is unused in this mode.

The CT tab with Quadrature Mode settings is shown in Figure 3-12.

Click Store Configuration to write settings to hardware.

After you **Start** the counter, data is returned in the **Relative Position** field. This represents the number of pulses on the Input Source in hexadecimal format. Data starts from 0xffffffff and counts up if the value from Gate Source=1. The data counts down if Gate Source=0.

PowerDNA Explorer File Edit Network Ver Help Image: Second Seco	Store C	Configuration
Ele Edit Network View Heip Image: Control of the subsystems Image: MF. 362 CP Model: MF-102 Info: MF. 8 subsystems SN: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02:15.84 Dev. Numa: 0, Slot3 ✓ Modifiable Al AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level: 16.0 V 1 Level: 20.0 V Counter 0 mode: Quadrature Start Gate Source TTL1 I imput Source FET4 Output Source FET1 Relative Position: counts Counter 1 mode: Quadrature Start Gate Source FET0 Imput Source FET4 Output Source FET1	RowerDNA Explorer	
Image: Service	File Edit Network View Help	
Host PC IOM-229577 Info: MF, 8 subsystems SN: 1357279 Mig. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level: 16:0 V 1 Level: 20:0 V Counter 0 mode: Quadrature ▼ Start Gate Source TTL1 ▼ Input Source FE1 ▼ Output Source FE1 ▼ Relative Position: Counter 1 mode: Quadrature ▼ Start Gate Source ET0 ▼ Input Source FE1 ▼ Output Source FE1 ▼ Relative Position: counts		
	Image: PC P IOM-229577 Image: PC <	Model: MF-102 Info: MF, 8 subsystems SN: 1357279 Mfg. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0, Slot 3 Modifiable Al AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level: 16.0 V 1Level: 20.0 V Counter 0 mode: Quadrature Start Gate Source TTL1 Input Source FET4 Output Source FET1 Relative Position: counts Counter 1 mode: Quadrature Start Gate Source FET0 Input Source TTL0 Output Source FET1

Figure 3-12 PowerDNA Explorer CT Tab, Quadrature Mode

3.8.3 Bin Counter Mode Bin Counter Mode counts pulses on the Input Source over a 1 second interval. Output Source is unused in this mode.

The CT tab with Bin Counter Mode settings is shown in **Figure 3-13**.

Click Store Configuration to write settings to hardware.

After you Start the counter, data is returned in the following displays:

• Counter Value: number of pulses over 1 second time interval

Store Configuration

Figure 3-13 PowerDNA Explorer CT Tab, Bin Counter Mode

3.8.4 PWM Output PWM Output Mode generates a square wave on the Output Source. Gate and Input Sources are unused in this mode.

The CT Tab with PWM Output Mode settings is shown in **Figure 3-14**. It includes the following:

- Duty Cycle: Sets the duty cycle of the Output square wave.
- **Output Frequency**: Sets the desired frequency of the Output square wave, between 1 and 10,000 Hz.

Press the **Enter** key after typing numerical inputs and click **Store Configuration** to write settings to hardware.

After you **Start** the counter, PWM is output corresponding to the settings applied.

NOTE: For FET-based digital outputs, it is easier to generate PWM signals directly through the DO subsystem (Section 3.5).

Store Configuration

NowerDNA Explorer File Edit Network View Help Image: State Sta		
File Edit Network View Help Image: Section of the subsystems Image: Section of the subsystems Image: Section of the subsystems SN: 1357279 Mig. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level:	RowerDNA Explorer	
Image: Section of the section of t	<u>File Edit Network View H</u> elp	
Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfp. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver:: 02.15.84 Dev. Num:: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level:16.0 V 1 Level:20.0 V Counter 0 mode: PWM Output ♥ Start Gate Source TTL ♥ Input Source FET4 ♥ Output Source TTL0 ♥ Duty Cycle:50 % Output Source FET1 ♥ Duty Cycle:50 % Output Source FET1 ♥ Duty Cycle:50 % Output Source FET1 ♥ Duty Cycle:50 % Output Frequency:1000 Hz		
	Image: Constraint of the second s	Model: MF-102 Info: MF, 8 subsystems SN: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num: 0, Slot 3 Modifiable AI AO DI DO Serial TTL Counter/Timer O Level: 16.0 V 1 Level: 20.0 V Counter 0 mode: PWM Output Start Gate Source Duty Cycle: 50 Source FET4 Output Frequency: 1000 Hz Start Gate Source FET0 Input Source TIL Output Frequency: 1000 Hz 50 Output Frequency: 1000 Hz 50 Output Frequency: 1000 Hz 50

Figure 3-14 PowerDNA Explorer CT Tab, PWM Output Mode

3.8.5 Frequency Mode Frequency Mode measures the frequency of the Input Source over a userconfigured time interval. The Output Source is unused in this mode.

The CT Tab with Frequency Mode settings is shown in **Figure 3-15** It includes the following:

• **Measurement Period**: Time interval for the frequency measurement, between 1 and 32,537,631 microseconds.

Press the Enter key after typing numerical inputs and click **Store Configuration** to write the settings to hardware.

After you **Start** the counter, data is returned in the following displays:

• Measured Frequency: measured Input frequency in Hz.

PowerDNA Explore File Edit Network View Help File Edit Network View Help Mode: MF-102 Mode: MF-102 Info: MF, 8 subsystems SN: 1357279 Mg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0, Slot 3 P Modifiable Al AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Leve: 16.0 ∨ 1 Levei: 20.0 ∨ Counter 0 mode: Frequency ✓ Start Gate Source TTL ✓ Input Source FET4 ✓ Output Source TL ✓ Usec. Measurement Period: Usec. Hz Counter 1 mode: Frequency ✓ Start Counter 1 mode: Frequency ✓ Start	,	
Ele Edit Network View Help Host PC Ho	RowerDNA Explorer	
Image: Section of the section of t	<u>File Edit N</u> etwork <u>View H</u> elp	
Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver: 02.15.84 Dev. Num: 0. Slot 3 ✓ Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level: 16.0 V 1 Level: 20.0 V Counter 0 mode: Frequency ✓ Start Gate Source TTL1 ✓ Input Source FET4 ✓ Output Source TU ✓ Measurement Period: 0 ⁺ µsec. Measurement Period: 0 ⁺ µsec. Measurement Period: 0 ⁺ µsec. Measurement Period: 0 ⁺ µsec. Measurement Period: 0 ⁺ µsec.	K I RR	
Measurement Period: 0 + µsec.	Host PC ←	Model: MF-102 Info: MF, 8 subsystems SN: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num: 0, Slot 3 ♥ Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable Counter/Timer 0 Level: 16.0 V 1 Level: 16.0 V 1 Level: 20.0 V Counter 0 mode: Frequency Start Gate Source TTL1 I Input Source FET4 Output Source TTL0 V Measurement Period: 0 USAC Measured Frequency Start Gate Source FET0 Input Source TTL0 Output Source FET1 V Measurement Period: 0 USAC Measurement Period: 0 USAC MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEASURA MEAS
		112

Store Configuration

Figure 3-15 PowerDNA Explorer CT Tab, Frequency Mode

- **3.9** Logic-Level The DNx-MF-102 provides two dedicated channels for TTL input and two that are dedicated for TTL output. To explore the TTL-level digital I/O subsystem, open the TTL tab and click Enable TTL.
- **3.9.1Read TTL**
InputsClick the **Read Input Data** button to read the state of the two TTL input
channels. The TTL Input subtab (Figure 3-16) contains the following columns:
 - **TTLX**: read-only display of the channel number.
 - Name: a name that you wish to give to the channel.
 - State: displays the logic state of the channel.

Read Input Data		
RowerDNA Explorer		
<u>File Edit N</u> etwork <u>V</u> iew <u>H</u> elp		
 Host PC 	Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num: 0, Slot 3 Modifiable Al AO Di DO Serial TTL Counter/Timer CAN Enable TTL Input Output Input Output	

Figure 3-16 PowerDNA Explorer TTL Tab, Input Subtab

- **3.9.2 Write TTL Data** The TTL Output subtab (Figure 3-17) contains the following columns:
 - **TTLX**: read-only display of the channel number.
 - Name: a name that you wish to give to the channel.
 - State: toggles the logic state of the TTL output channel.

🔍 PowerDNA Explorer		
<u>File Edit N</u> etwork <u>V</u> iew <u>H</u> elp	0	
11 🖪 🔂 🖻 12		
 Host PC IOM-229577 □ MF-102 	Model: MF-102 Info: MF, 8 subsystems S/N: 1357279 Mfg. Date: Jun 21, 2024 Cal. Date: Nov 30, 0002 Logic Ver.: 02.15.84 Dev. Num.: 0, Slot 3 ✓ Modifiable AI AO DI DO Serial TTL Counter/Timer CAN Enable TTL Input Output Input TTL0 TTL Out 0 TTL1 TTL Out 1	

Figure 3-17 PowerDNA Explorer TTL Tab, Output Subtab

Chapter 4 Programming with High-level API

This chapter provides the following information about programming the DNx-MF-102 using the UeiDaq Framework API:

- About the High-level API (Section 4.1)
- Example Code (Section 4.2)
- Create a Session (Section 4.3)
- Assemble the Resource String (Section 4.4)
- Configure the Timing (Section 4.5)
- Start the Session (Section 4.6)
- Analog Input Session (Section 4.7)
- Analog Output Session (Section 4.8)
- Industrial Digital Input Session (Section 4.9)
- Industrial Digital Output Session (Section 4.10)
- TTL Digital Input Session (Section 4.11)
- TTL Digital Output Session (Section 4.12)
- Counter Input Session (Section 4.13)
- Counter Output Session (Section 4.14)
- Diagnostics Session (Section 4.15)
- Serial Port Session (Section 4.16)
- CAN Bus Port Session (Section 4.17)
- Stop the Session (Section 4.18)

4.1 About the High-level API

The UeiDaq Framework is object oriented and its objects can be manipulated in the same manner from different development environments, such as C++, Python, MATLAB, LabVIEW, and more. The Framework is supported in Windows 7 and up. It is generally simpler to use compared to the low-level API, and it includes a generic simulation device to assist in software development. Therefore, we recommend that Windows users use the Framework unless unconventional functionality is required. Users programming for a non-Windows operating system should instead use the low-level API (Chapter 5).

For more detail regarding the Framework's architecture, please see the *"UeiDaq Framework User Manual"* located under:

Start » All Programs » UEI

For information on the Framework's classes, structures, and constants, please see the *"UeiDaq Framework Reference Manual"* located under:

Start » All Programs » UEI

4.0	Evennle	
4.2	Code	languages. The example code is located under:
		C:\Program Files (x86)\UEI\Framework
		The examples can be accessed via the Windows Start Menu. For example:
		Start » All Programs » UEI » Visual C++ Examples
		Unlike the low-level examples, Framework examples are board-agnostic, e.g., the "AnalogInBuffered" example works across all UEI analog input boards which support the Advanced Circular Buffer (ACB) data acquisition mode.
		Each high-level example follows the same basic structure listed in the following steps. Subsystem configuration (Step 3) and reading and writing of data (Step 6) are specific to particular subsystems so that information is presented in sections that are tailored to that subsystem.
		1. Create a session (Section 4.3).
		2. Assemble the resource string (Section 4.4).
		 Configure the session for a particular device and subsystem (Section 4.7 through Section 4.17).

- 4. Configure the timing (Section 4.5).
- 5. Start the session (Section 4.6).
- 6. Read or write data (Section 4.7 through Section 4.17).
- 7. Stop the session (Section 4.18).

This chapter presents examples using the C++ API, but the concepts are the same no matter which programming language you use. The *"UeiDaq Framework User Manual"* provides additional information about programming in other languages.

4.3Create a
SessionThe session object manages all communications with the DNx-MF-102.
Therefore, the first step is always to create a new session.

//create a session object

CUeiSession mySession;

NOTE: If you want to use multiple subsystems on the DNx-MF-102 (for example simultaneous analog input and output), you will need to create a new session for each subsystem. Therefore, example sessions for each subsystem will be given unique names.

4.4 Assemble the Resource String String Each session is dedicated to a specific subsystem within the device. Framework uses a resource string to link the session to the hardware. The resource string syntax is similar to a web URL; it should not have any spaces and is case insensitive.

"<device class>://<IP address>/<device number>/<subsystem><channel list>"

The components of a resource string are as follows:

- <device class> By default, Framework examples open with a generic simulated device. To use the DNx-MF-102, set the device class to pdna.
- <*IP address*> IP address of the IOM.
- <device number> position of the DNx-MF-102 within the chassis, relative to the other I/O boards.
- <subsystem> one of the following DNx-MF-102 subsystems:
 - Ai: analog input session (Section 4.7)
 - Ao: analog output session to generate voltage and/or current (Section 4.8)
 - Di0: industrial digital input session to configure all 16 lines (Section 4.9)
 - Diline0: industrial digital input session to configure selected lines (Section 4.9)
 - Do0: industrial digital output session to configure all 16 lines (Section 4.10)
 - Doline0: industrial digital output session to configure selected lines (Section 4.10)
 - Dil: TTL digital input session (Section 4.11)
 - Do1: TTL digital output session (Section 4.12)
 - Ci: counter input session to count events or measure pulse width and period (Section 4.13)
 - Co: counter output session to generate pulses and pulse trains (Section 4.14)
 - Diag: diagnostic session to read from analog output and DIO ADCs (Section 4.15)
 - Com: serial port session to send/receive RS-232/422/485 data (Section 4.16)
 - CAN: session to send/receive CAN bus data (Section 4.17)
- <*channel list*> desired lines or ports within the selected subsystem, either as a comma-separated list of numbers or a range. If the subsystem name ends in a number, separate the subsystem and channel list with a forward slash.

Example 1

Here are two valid resource strings for selecting analog input lines 0,1,2,3 on device 1 at IP address 192.168.100.2:

- "pdna://192.168.100.2/Dev1/Ai0,1,2,3"
- "pdna://192.168.100.2/Dev1/Ai0:3"

Example 2

The following resource string selects TTL digital input port 0 on device 1 at IP address 192.168.100.2:

• "pdna://192.168.100.2/Dev1/Di1/0"

Refer to Section 4.7 through Section 4.17 for details on configuring the different types of subsystems.

4.5 Configure the Timing The UeiDaq Framework supports Point-by-Point data acquisition mode for all DNx-MF-102 functions. AVMap mode is supported for analog inputs. See Table 4-1. Additional modes are supported by the low-level API (Chapter 5).

Table 4-1 DAQ N	Nodes Supported	by UeiDaq Framework
-----------------	-----------------	---------------------

DAQ Mode	Aln	AOut	DIn	DOut	TTL	СТ	Serial	CAN
Point-by-Point	•	٠	٠	٠	•	•	٠	٠
Async								
ACB								
RtDMap								
RtVMap								
ADMap								
AVMap	•							

Point-by-Point mode transfers one sample at a time to/from each configured channel of the I/O board. The delay between samples is controlled by the host application (e.g., by using a Sleep function), thus limiting the data transfer rate to a maximum of 100 Hz. This mode is also known as immediate mode or simple mode.

Point-by-Point mode uses Simple IO timing.

```
//configure session to use Point-by-Point DAQ mode
```

mySession.ConfigureTimingForSimpleIO();

AVMap mode allows acquisition of a variable number of samples per configured analog input channel instead of a single sample.

AVMap mode requires timing to be configured by calling

ConfigureTimingForAsyncVMapIO():

```
//configure timing for AVMap DAQ mode
//use an internal clock, 50 Hz date rate into FIFO, digital edge is
//ignored for analog inputs, FIFO watermark of 100 scans, period is not
//used when watermark is used
```

```
aiSession.ConfigureTimingForAsyncVMapIO(UeiTimingClockSourceInternal,
50.0, UeiDigitalEdgeRising, 100, 0);
```

Configure each session in the application with the appropriate timing mode.

4.6 Start the After the session is configured, you can start the session manually: **Session**

```
//Start the session.
```

mySession.Start();

If you don't explicitly start the session, it will start automatically the first time you try to transfer data.

- **4.7 Analog Input** The session may be configured to access the analog input (Ai) subsystem. **Session**
- 4.7.1 Configure Input Channels The CreateAIChannel() method adds a new channel for each analog input specified in the resource string. Single-ended inputs are numbered 0...15 and differential-ended inputs are numbered 0...7. It is possible to call CreateAIChannel() multiple times to add channels with different gains or input modes.

- resource Resource string specifying the analog inputs to configure (Section 4.7.1.1).
- min specifies the minimum value in the range.
- max specifies the maximum value in the range.
- mode The input mode of the analog input(s).

4.7.1.1 Add Input Add analog input channels as follows: Channels

//Configure ch[0:2] to read differential inputs 0, 1, and 2. //Set gain to 1x (-10 V to 10 V range when voltage divider is disabled).

//Configure ch[7:15] to read the remaining inputs in single-ended mode.

```
aiSession.CreateAIChannel("pdna://192.168.100.2/Dev1/Ai7:15",
-10, 10, UeiAIChannelInputModeSingleEnded);
```

The min and max parameters in CreateAIChannel() configure the channel gain. Table 4-2 shows the supported min/max values and their corresponding gain settings. For example, setting [min, max] to either [-10, 10] or [-80, 80] configures the gain to x1.

Table 4-2 Analog Input Ranges (Volts)

Gain	Without divider	With divider
x1	[-10, 10]	[-80, 80]
x4	[-2.5, 2.5]	[-20, 20]
x8	[-0.625, 0.625]	[-5,5]
x64	[-0.15625, 0.15625]	[-1.25, 1.25]

When reading input channels, saturation or clipping can occur if the gain is too high, making the value appear stuck at the highest or lowest value. Try a lower gain value, or begin with x1. If you accidentally create a channel with unsupported values, the board will be programmed with the closest supported gain.

- **NOTE:** To use the input ranges in the "With divider" column, you must also enable the voltage divider (see Section 4.7.1.2 below). Setting [min, max] to [-80, 80], [-20, 20], [-5, 5], or [-1.25, 1.25] only programs the gain; it does not automatically enable the divider.
- **4.7.1.2 Enable Voltage Divider** When enabled, the voltage divider reduces the voltage on the channel by a factor of 8. It is also a convenient way to tie unused input pins to ground, as is required on the DNx-MF-102 (see Section 2.8.1.2). The divider is enabled/ disabled individually for each channel.

//Enable voltage divider on every channel in the session.
for (int ch = 0; ch < aiSession.GetNumberOfChannels(), ch++)
{
 CUeiAIChannel* aichannel =
 dynamic_cast<CUeiAIChannel*>(aiSession.GetChannel(ch));
 aichannel->EnableVoltageDivider(true);
}

NOTE: Use the GetChannel() method to obtain a pointer to a channel, rather than CUeiAIChannel* aichannel = aiSession.CreateAIChannel().CreateAIChannel() returns a pointer to only the first channel in the list.

- 4.7.1.3 AddTimestamp the data by adding a ts channel as the last channel in the resource
string: "pdna://192.168.100.2/Dev1/Ai0:2,ts". The units will be in
seconds. Note that there are no spaces in a properly formatted resource string.
- 4.7.1.4 Configure Moving Average
 Average
 Enabling the moving average can smooth out noise from the sensor input line. The number of samples used for the moving average may be set to 0, 2, 4, 8, 16, 32, 64, 128, or 256. The default window size is 0 (turned off/average every sample). Moving average samples are acquired at the analog input subsystem clock rate (default 2 kHz).

//Set moving average window size to 128 samples.

aichannel->SetMovingAverageWindowSize(128);

4.7.2 Read Data Reading data is done using a reader object. An Analog Raw Reader returns the calibrated binary data and an Analog Scaled Reader returns the data converted to volts. The following example code shows how to create a scaled reader object and read input voltages.

//Create a reader object and link it to the session's data stream.

CUeiAnalogScaledReader aiReader(aiSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[16];

//For point-to-point, read one sample per channel.

aiReader.ReadSingleScan(data);

//For AVMap, read available scans.

aiReader.ReadMultipleScans(100, data);

- 4.8 Analog The session may be configured to access the analog output (Ao) subsystem. Output Session
- **4.8.1** Configure
 The two analog outputs on the DNx-MF-102 are independently configurable as either voltage or current outputs. The CreateAOChannel() method adds a new channel for each analog output specified in the resource string.

CUeiAOChannel* CreateAOChannel(std::string resource, f64 min, f64 max);

- resource Resource string specifying the analog outputs to configure (Section 4.8.1.1 and Section 4.8.1.2).
- min specifies the minimum value you expect to generate.
- max specifies the maximum value you expect to generate.
- **4.8.1.1 Voltage Output** Use the CreateAOChannel() method to add a new voltage output channel to the session. The channel is linked to the output line(s) specified in the resource string.

//Configure ch[0] to output voltage on AOut 0 in the -10V to 10V range.

aoSession.CreateAOChannel("pdna://192.168.100.2/Dev1/Ao0", -10, 10);

Voltage output ranges (V):

- [-5, 5]
- [-10, 10]

If you accidentally create a channel with unsupported min or max values, the board will be programmed with the closest supported range.

 4.8.1.2
 Current
 Use the CreateAOCurrentChannel() method to add a new current output

 Output
 channel.

//Configure ch[1] to output current on AOut 1 in the 4mA to 20mA range.

Current output ranges (mA):

- [0, 20]
- [4, 20]
- [-1, 22]

4.8.2 Write Data Writing data is done using a writer object. An Analog Raw Writer sends binary data straight to the D/A converter. An Analog Scaled Writer accepts data in units of volts or milliamps, depending on the channel configuration, and automatically converts the scaled data to binary.

The following example code shows how to create a scaled writer object and write a single set of data. Assume both channels are configured for voltage output in the \pm 10V range.

//Create a writer object and link it to the session's data stream. CUeiAnalogScaledWriter aoWriter(aoSession.GetDataStream()); //Buffer contains one value per channel. double data[2] = {-2.5, 7.5}; //Write -2.5V to ch[0] and 7.5V to ch[1] aoWriter.WriteSingleScan(data);

> **NOTE:** The DNx-MF-102 does not support the CreateAOWaveform() method. Instead, you must manually generate waveform data and load it into the data buffer.

4.8.3Read
Diagnostic
DataYou can read temperature and voltage from the analog output ADCs through a
separate Diagnostic session (Section 4.15).

4.9 Industrial The session may be configured to access the industrial digital input (Di0 or Digital Input Session Diline0) subsystem.

4.9.1Configure
InputThe CreateDIIndustrialChannel() method adds FET-based digital input
channels, sets their hysteresis thresholds, and programs a debouncer to
eliminate glitches and spikes.

NOTE: When configuring DNx-MF-102 channels as both industrial digital inputs and industrial digital outputs, the inputs must be configured before the outputs.

CUeiDIIndustrialChannel* CreateDIIndustrialChannel(std::string resource, double lowThreshold, double highThreshold, double minPulseWidth);

- resource Resource string specifying the port (Section 4.9.1.1) or the line (Section 4.9.1.2)
- lowThreshold Logic level changes from 1 to 0 when the input voltage falls below the low hysteresis threshold.*
- highThreshold Logic level changes from 0 to 1 when the input voltage rises above the high hysteresis threshold.*
- minPulseWidth Debouncer only allows a state change when the input has remained stable at the new level for this number of milliseconds. Use 0.0 to disable the debouncer. The maximum allowable value for minPulseWidth width is 327 ms. If a larger value is passed to this method, a value of 327 ms will be used.

*If the signal is in between the low and high thresholds, the detector maintains the previous logic level.

4.9.1.1 Adding a Port Using Di0 in the resource string adds the entire digital input port to one channel.

//Get pointer to input port (channel index = 0) and configure DIO0:15
//with low threshold=2.0 V, high threshold=3.0 V, and
//debouncing interval=1.0 ms.

CUeiDIIndustrialChannel* diPort = diSession.CreateDIIndustrialChannel
 ("pdna://192.168.100.2/Dev1/Di0",
 2.0, 3.0, 1.0);

You can reconfigure individual lines using methods in the CUeiDIIndustrialChannel class.

//Change DIO7 configuration to low threshold=1.5 V, high threshold=3.5 V, //and debouncing interval=2.0 ms.

```
diPort->SetLowThreshold(7, 1.5);
diPort->SetHighThreshold(7, 3.5);
diPort->SetMinimumPulseWidth(7, 2.0);
```


4.9.1.2 Adding Alternatively, you can configure a subset of lines by specifying Diline0 in the resource string and appending the desired line numbers. Note that all digital input channels should be initially configured in a single call to CreateDIIndustrialChannel().

Calling CreateDIIndustrialChannel() multiple times on the same session will result in only the channels in the final call being added to the session.

//Configure DIO2:3 and DIO7:10, initially with the same hysteresis
//thresholds debounce interval.

CUeiDIIndustrialChannel* diLines = diSession.CreateDIIndustrialChannel
("pdna://192.168.100.2/Dev1/Diline0/2:3,7:10", 2.0, 3.0, 1.0);

This will create a number of CUeiDIIndustrialChannel instances equal to the number of specified digital input lines. Per-channel configuration can then be performed on the channels. The order of channels is the same order in which the channels appeared in the resource string. Note that the <line> parameter when setting channel parameters is always 0 when using the "DiLine" session type. The following example sets the low threshold for each of the digital input lines specified in the resource string above.

//Set channel index 0 (line 2 in the resource string) low threshold to 0 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(0))->SetLowThreshold(0, 0.0); // Set channel index 1 (line 3 in the resource string) low threshold to 1 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(1))->SetLowThreshold(0, 1.0); // Set channel index 2 (line 7 in the resource string) low threshold to 2 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(2))->SetLowThreshold(0, 2.0); // Set channel index 3 (line 8 in the resource string) low threshold to 3 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(3))->SetLowThreshold(0, 3.0); // Set channel index 4 (line 9 in the resource string) low threshold to 4 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(4))->SetLowThreshold(0, 4.0); // Set channel index 5 (line 10 in the resource string) low threshold to 5 V ((CUeiDIIndustrialChannel*)diSession.GetChannel(5))->SetLowThreshold(0, 5.0);

4.9.2 Read Data Reading data is done using a Digital Reader object. This is created using the session's data stream object. Digital data is stored in a 16-bit integer buffer. The reader reads from all lines in the port, even if Diline configured only a subset of lines.

//Create a reader object and link it to the session's data stream. CUeiDigitalReader diReader(diSession.GetDataStream());

4.9.2.1 Read DI Port When reading industrial digital input data from a Di0 session, use uInt16 data. A single uInt16 will be returned with the low/high debounced status mask of all 16 channels.

//Read state of DIO0:15

uInt16 data; diReader.ReadSingleScan(&data);

4.9.2.2 Read Specific DI Lines When reading industrial digital input data from a Diline0 session, use uInt16 data. A number of uInt16 values will be returned that will be equal to the number of configured channels. Only bit 0 of each 16-bit value should be used (0 is low, 1 is high).

//Read state of DIO0:15

uInt16* digitalState = new uInt16[diSession.GetNumberOfChannels()]; diReader.ReadSingleScan(digitalState);

NOTE: If you are simultaneously running a digital output session, ensure that the output mask is disabled for the input-only lines. Otherwise, the reader will return the values written to the port.

- 4.9.3 Read Input
VoltagesYou can read voltage from the DIO ADCs by creating a separate Diagnostic
session (Section 4.15).
- 4.10 Industrial The session may be configured to access the industrial digital output (DoO or DolineO) subsystem. Because sessions are unidirectional, you will need a dedicated output session even though output and input share the same physical port.
- 4.10.1 Configure
 The CreateDOIndustrialChannel() method adds FET-based digital output channels and configures PWM on those channels.

 Channels
 NOTE: When configuring DNx-MF-102 channels as both industrial digital inputs and industrial digital outputs, the inputs must be configured before the outputs.

CUeiDOIndustrialChannel* CreateDOIndustrialChannel(std::string resource, tUeiDOPWMMode pwmMode, uInt32 pwmLengthUs, uInt32 pwmPeriodUs, double pwmDutyCycle);

- resource Resource string specifying the port (Section 4.10.1.1) or the line (Section 4.10.1.2)
- pwmMode Type of pulse train to output (Section 4.10.1.4)
- pwmLengthUs Total duration of soft start and/or soft stop pulse train in microseconds; ignored in other PWM modes
- pwmPeriodUs Period in microseconds; min 5 µs, max 254200 µs
- pwmDutyCycle Duty cycle between 0.0 and 1.0

4.10.1.1 Add a Port Using Do0 in the resource string adds the entire digital output port to one channel.

```
//Configure DIO0:15 for output with no PWM. The last 3 parameters are
//ignored when PWM is disabled.
```

```
doSession.CreateDOIndustrialChannel("pdna://192.168.100.2/Dev1/Do0",
    UeiDOPWMDisabled, 0, 0, 0);
```

All outputs in the channel are enabled by default. You can selectively enable/ disable outputs with a 16-bit output mask (LSB is DIO0).

NOTE: If you are simultaneously running a digital input session, ensure that the output mask is disabled (i.e., set to 0) for the input-only channels.

//Get pointer to output port (channel index = 0)

```
CUeiDOIndustrialChannel* doPort =
    dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(0));
```

//Enables output on DIO0:7. DIO8:15 are configured as input-only.

```
doPort->SetOutputMask(0xff);
```

PWM features are configurable on a line-by-line basis.

```
//Configure DIO1 for a soft start; period = 80us and duration = 2000us
doPort->SetPWMMode(1, UeiDOPWMSoftStart);
doPort->SetPWMPeriod(1, 80);
doPort->SetPWMLength(1, 2000);
```

4.10.1.2 Add Selected Alternatively, you can configure a subset of lines by specifying Doline0 in the resource string and appending the desired line numbers.

//Configure DI02:3 and DI04:7 with 25% and 50% duty cycles respectively.

doSession.CreateDOIndustrialChannel("pdna://192.168.100.2/Dev1/Doline0/ 2:3", UeiDOPWMContinuous, 1000, 50, 0.25); doSession.CreateDOIndustrialChannel("pdna://192.168.100.2/Dev1/Doline0/ 4:7", UeiDOPWMContinuous, 1000, 50, 0.5);

This approach creates one channel per line. Unlike a Do0 line, each Doline is reconfigured using a unique channel index as follows:

//Get pointer to DIO4. DIO4 is ch3 in the list created above. CUeiDOIndustrialChannel* dochannel = dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(3)); //Set DIO3 period to 200 us (pass in 0 for the line parameter) dochannel->SetPWMPeriod(0, 200);

However, even if you configured only a subset of lines, the output mask applies to all 16 lines. You can use the same output mask code shown in Section 4.10.1.1. It does not matter which channel calls SetOutputMask().

4.10.1.3 Configure You can connect a DIO line to Vcc and/or Gnd (Figure 2-4). Pull-up/down Resistors UeiDigitalTerminationNone - no termination

- UeiDigitalTerminationPullUp enable only pull-up resistor
- UeiDigitalTerminationPullDown enable only pull-down resistor
- UeiDigitalTerminationPullUpPullDown enable both pull-up and pull-down resistor

//Connect pull-up resistor between DIO1 and Vcc.

doPort->SetTermination(1, UeiDigitalTerminationPullUp);

4.10.1.4 PWM Modes Choose one of the following options for the pwmMode input parameter:

- UeiDOPWMDisabled disable PWM
- UeiDOPWMSoftStart generate a pulse train after writing 1 if its previous state was 0. The PWM duty cycle gradually increases from 0% to pwmDutyCycle over pwmLengthUs.
- UeiDOPWMSoftStop generate a pulse train after writing 0 if its previous state was 1. The PWM duty cycle gradually decreases from pwmDutyCycle to 0% over pwmLengthUs.
- UeiDOPWMSoftBoth generate a pulse train for both a low-to-high and high-to-low transition.
- UeiDOPWMContinuous continuously generates a pulse train with pwmDutyCycle. When writing to digital outputs, ensure that a 1 is written to any output that is configured for UeiDOPWMContinuous mode.
- UeiDOPWMGated generates a pulse train with pwmDutyCycle only when a 1 is written to the output.

4.10.1.5 Configure Y PWM Push/

Pull

- You can specify which FETs are switched by the PWM output:
 - UeiDOPWMOutputPush switch only high-side FET
 - UeiDOPWMOutputPull switch only low-side FET
 - UeiDOPWMOutputPushPull switch both FETs
 - UeiDOPWMOutputOff no PWM applied to either FET

//Enable PWM on only high-side FET of DIO1.

doPort->SetPWMOutputMode(1, UeiDOPWMOutputPush);

4.10.2 Write Data Writing data is done using a a Digital Writer object. Digital data is written as a 16-bit integer. The writer updates all lines in the port, even if Doline configured only a subset of lines. FET-based outputs should be enabled using SetOutputMask(), else the data for those bits will be ignored.

//Create a writer object and link it to the session's data stream. CUeiDigitalWriter doWriter(doSession.GetDataStream()); //Write a 1 on DI015:8 and a 0 on DI07:0. uInt16 data = 0xff00; doWriter.WriteSingleScan(&data);

- 4.10.3 Read Output
VoltagesYou can monitor digital outputs using an analog input session, as described in
Section 4.9.3.
- **4.11 TTL Digital** The session may be configured to access the TTL digital input (Di1) subsystem. Input Session
- 4.11.1 Configure
Input PortThe DNx-MF-102 has only one TTL input port, so the resource string should
specify port 0 as shown in the code snippet below. The TTL input port includes
both TTL lines. You cannot configure a TTL session to only access a subset of
lines as you can with an industrial digital input session.

//Configure session to read the TTL input port.

ttliSession.CreateDIChannel("pdna://192.168.100.2/Dev1/Di1/0");

4.11.2 Read Data Reading data is done using a Digital Reader object. Digital data is stored in a 16-bit integer buffer. Bits 0 and 1 are TTL lines 0 and 1, respectively. The other bits are currently reserved.

//Create a reader object and link it to the session's data stream. CUeiDigitalReader diReader(ttliSession.GetDataStream()); //Read state of all lines in the port. A scan returns a 16-bit integer. uInt16 data[1]; diReader.ReadSingleScan(data);

- 4.12
 TTL Digital
 The session may be configured to access the TTL digital output (Dol) subsystem.

 Session
 Subsystem.
- 4.12.1 Configure Output Port
 The DNx-MF-102 has only one TTL output port, so the resource string should specify port 0 as shown in the example below. The TTL output port includes both TTL lines. Bits 0 and 1 are TTL lines 0 and 1, respectively. The other bits are ianored.

```
//Configure session to use the TTL output port.
ttloSession.CreateDOChannel("pdna://192.168.100.2/Dev1/Do1/0");
//Obtain pointer to the output channel (only one channel in this case).
CUeiDOChannel* dochannel =
    dynamic cast<CUeiDOChannel*>(ttloSession.GetChannel(0));
```

4.12.2 Write Data Writing data is done using a Digital Writer object. Digital data is written as a 16-bit integer: Bits 0 and 1 are TTL lines 0 and 1, respectively. The other bits are currently reserved.

//Create a writer object and link it to the session's data stream.

CUeiDigitalWriter doWriter(ttloSession.GetDataStream());

//Set TTL DOut 1 = 1 and TTL DOut 0 = 0.

uInt16 data = 0x02; doWriter.WriteSingleScan(&data);

4.13 Counter Input The session may be configured to access the counter input (Ci) subsystem. **Session**

4.13.1 Add Input
ChannelsThe CreateCIChannel() method adds counter input channels and sets
basic configuration parameters.

CUeiCIChannel* CreateCIChannel(std::string resource, tUeiCounterSource source, tUeiCounterMode mode, tUeiCounterGate gate, Int32 divider, Int32 inverted);

- resource Resource string for counter 0 or counter 1
- source Set CLKIN to either the internal 66MHz clock or an external input pin (Section 4.13.2)
- mode Counting mode (Section 4.13.3)
- gate Use either an external or a software gate to enable the counter
- divider Prescaler divides source signal by this factor; default = 1
- inverted TRUE to invert source signal

```
//Configure counter 0 to count events on an external pin.
//An internal gate starts the count immediately.
//Source is divided by 2 and not inverted.
```

```
ciSession.CreateCIChannel("pdna://192.168.100.2/Dev1/Ci0",
    UeiCounterSourceInput, UeiCounterModeCountEvents,
    UeiCounterGateInternal, 2, false);
```

4.13.2 Route Counter The counter's CLKIN, GATE, and CLKOUT lines can be internally routed to the following pins:

- fetX Industrial DIO pins, e.g. "fet3" for DIO3
- ttlX TTL DIO pins, e.g., "ttl1" for TTL1

xThe external CLKIN pin is only used when the counter is configured with source = UeiCounterSourceInput. Similarly, the GATE pin is only used when the counter is configured with gate = UeiCounterGateExternal.

```
//Obtain pointer to the input channel (only one channel in this case).
CUeiCIChannel* counter =
    dynamic_cast<CUeiCIChannel*>(ciSession.GetChannel(0));
//Route CLKIN to DIO5.
//Route GATE to DIO3.
//Route CLKOUT to TTL1.
counter->SetSourcePin("fet5");
counter->SetGatePin("fet3");
counter->SetOutputPins("ttl1");
```


You can set up an optional input debouncer for CLKIN and GATE. The maximum allowable value for the minimum pulse width is 7.94 ms. If a larger value is passed to either of these methods, a value of 7.94 ms will be used.

```
//Allow state change only when inputs have stayed stable for 1.0 ms.
counter->SetMinimumSourcePulseWidth(1.0);
counter->SetMinimumGatePulseWidth(1.0);
```

For fetX inputs, you must also create a separate industrial digital input session (Section 4.9). This configures and starts up the A/D converter.

//Create new session.

CUeiSession diSession;

```
//Configure session to read from FET-based digital inputs.
//Low threshold = 2.0 V, high threshold = 3.0 V,
//debouncer interval = 1.0 ms
```

//Configure timing for Point by Point DAQ mode.

```
diSession.ConfigureTimingForSimpleIO();
```

You do not need a separate session for TTL-level inputs (ttlX), nor do you need one for outputs. If you are simultaneously running a digital output session and want to read in external inputs, remember to disable the output mask on inputonly lines. The counter session automatically overrides digital output session settings on output lines.

NOTE: CLKOUT should always be routed to an external pin, even if the counter is only used for input. CLKOUT remains high during a counter input session.

```
4.13.3 Counter Input Choose one of the following options for the mode parameter:
Modes
```

- UeiCounterModeCountEvents Count pulses on an external pin, or use as a timer by counting internal clock cycles
- UeiCounterModeBinCounting Count pulses over a user specified time interval (Section 4.13.3.1)
- UeiCounterModeMeasurePulseWidth Count the number of 66 MHz clocks while the input signal is high
- UeiCounterModeMeasurePeriod Count the number of 66 MHz clocks over the specified number of periods (Section 4.13.3.2). The number of clock ticks returned will actually have occurred over the specified number of periods plus 1, e.g., if 10 periods are specified, then the returned number of clock ticks will have occurred over 11 periods.
- UeiCounterModeTimedPeriodMeasurement Measure the average period over a user-specified time interval (Section 4.13.3.1); period is returned as a number of 66 MHz clocks

- UeiCounterModeQuadratureEncoder Quadrature encoder measurement; PWM signal on GATE controls the count direction
- UeiCounterModeDirectionCounter Count up if GATE is high and count down if GATE is low

```
      4.13.3.1 Set Capture
      The time interval for UeiCounterModeBinCounting and

      Time Interval
      UeiCounterModeTimedPeriodMeasurement is configured using the session's timing object.
```

//Get pointer to session's timing object. CUeiTiming* ciTiming = ciSession.GetTiming(); //Set frequency to 0.5 Hz; count is returned every 2.0 sec. ciTiming->SetScanClockRate(0.5);

4.13.3.2 Set Number of
PeriodsIn UeiCounterModeMeasurePeriod mode, the counter can be configured
to measure the total duration of N+1 periods.

//Update the counter when 11 (N+1) periods have elapsed. counter->SetPeriodCount(10);

The counter returns the previous measurement until the specified number of periods have been counted again.

4.13.4 Read Count DataReading data is done using a reader object. Digital data is stored in a 32-bit integer buffer.

//Create a reader object and link it to the session's data stream.

CUeiCounterReader ciReader(ciSession.GetDataStream());

//Read the current count value.

uInt32 data[1]; ciReader.ReadSingleScan(data);

4.14 Counter The session may be configured to access the counter output (Co) subsystem. Output Session

4.14.1 Add Output
ChannelsThe CreateCOChannel() method adds counter output channels and
configures the shape of the output signal.

```
CUeiCOChannel* CreateCOChannel(std::string resource,
tUeiCounterSource source, tUeiCounterMode mode,
tUeiCounterGate gate, uInt32 tick1, uInt32 tick2,
Int32 divider, Int32 inverted);
```

- resource Resource string for counter 0 or counter 1
- source Set CLKIN to either the internal 66 MHz clock or an external input pin (Section 4.13.2)
- mode Counting mode (Section 4.14.3)
- gate Use either an external or a software gate to enable the counter
- tick1 Number of counts for which output is low
- tick2 Number of counts for which output is high
- divider Prescaler divides source signal by this factor; default = 1
- inverted TRUE to invert source signal

```
//Configure counter 0 to output pulse train
// (period=6 ms, duty cycle=75%).
//Count ticks of an undivided, non-inverted 66 MHz source clock.
//An internal gate starts the output immediately.
coSession.CreateCOChannel("pdna://192.168.100.2/Dev1/Co0",
UeiCounterSourceClock, UeiCounterModeGeneratePulseTrain,
UeiCounterGateInternal, 100000, 300000,
1, false)
```

4.14.2 Route Counter Refer to Section 4.13.2 and the methods in the CUeiCOChannel class. to DIO Pins

4.14.3 Counter Output Modes

- Choose one of the following options for the mode parameter:
 - UeiCounterModeGeneratePulse Generate a single pulse
 - UeiCounterModeGeneratePulseTrain Generate a continuous pulse train
 - UeiCounterModePulseWidthModulation Generate a pulse width modulated waveform (same as GeneratePulseTrain)

4.14.4 Write Output
ParametersYou can write new tick1 and tick2 values to the counter using a writer object.
This is used to change the PWM period and/or duty cycle after the session has
already been started.

//Create a writer object and link it to the session's data stream. CUeiCounterWriter coWriter(coSession.GetDataStream()); //Buffer must be large enough to contain two 32-bit integers per channel. uInt32 data[2]={20000, 5000}; //Set tick1 = 20000 (low duration) //Set tick2 = 5000 (high duration)

coWriter.WriteSingleScan(data);

4.15 Diagnostics The session may be configured to read diagnostic data from the Analog Output and Industrial DIO subsystems.

4.15.1 Add Input Channels The CreateDiagnosticChannel() method adds the diagnostic channels specified in the resource string. The Diag subsystem supports the channel numbers listed in Table 4-3 plus a time stamp channel (Section 4.7.1.3).

//Configure session to read all AOut1 diagnostics.

```
diagSession.CreateDiagnosticChannel("pdna://192.168.100.2/Dev1/
Diag4:7");
```

Channel #	Description
0	DAC temperature on AOut0
1	Voltage on AOut0
2	Voltage on AGnd0
3	DAC supply voltage on AOut0
4	DAC temperature on AOut1
5	Voltage on AOut1
6	Voltage on AGnd1
7	DAC supply voltage on AOut1
8	Voltage on DIO0
9	Voltage on DIO1
10	Voltage on DIO2
:	:
22	Voltage on DIO14
23	Voltage on DIO15

Table 4-3 Diagnostic Channel Numbers

To help keep track of the different channels in a session, you can retrieve an abbreviated description of each channel with GetAliasName(). The following example code returns the string 'temp_aout1' when used with the channel list created above.

//Retrieve name of first channel in the CreateDiagnosticChannel() list. diagSession.GetChannel(0)->GetAliasName();

4.15.2 Read Data Read diagnostic data the same way as you would in an analog input session. An Analog Raw Reader object returns the calibrated binary data, while an Analog Scaled Reader returns the data converted to °C or Volts. The following example code reads scaled temperature and voltage from a session with four channels.

//Create a reader object and link it to the session's data stream.

CUeiAnalogScaledReader diagReader(diagSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[4];

//Read one sample per channel.

diagReader.ReadSingleScan(data);

4.16 Serial Port Session The session may be configured to access the RS-232/422/485 (Com) subsystem. by using the CreateSerialPort() method to link the session to the serial port (Port 0). Use the method to configure basic port settings and obtain a pointer to the port.

CUeiSerialPort* CreateSerialPort(std::string resource, tUeiSerialPortMode mode,tUeiSerialPortSpeed bitsPerSecond, tUeiSerialPortDataBits dataBits, tUeiSerialPortParity parity, tUeiSerialPortStopBits stopBits, std::string termination);

- resource Resource string specifying the device and port(s) to add to the session.
- mode serial port mode: RS-232, RS-485 half and full duplex.
- bitsPerSecond number of bits transmitted per second over the serial link.
- dataBits number of data bits describing each character.
- parity parity scheme used for transmission error detection.
- stopBits number of stop bits used to indicate the end of a data message
- termination read operation terminates when the termination string is read from the serial device.
- 4.16.1 Configure the
PortThe CreateSerialPort() method links the session to the serial port
(Port 0), configures basic port settings, and returns a pointer to the port.

You can configure additional DNx-MF-102 serial port settings by calling the CUeiSerialPort methods summarized in Table 4-4. For example:

```
//Connect RX and TX signals internally and disable external signals.
port->EnableLoopback(TRUE);
```


Function	Description
SetMode	Set port to RS-232, RS-422, or RS-485 mode.
SetSpeed	Select a predefined baud rate or enable a custom rate.
SetCustomSpeed	Set a custom baud rate in bits per seconds.
SetDataBits	Set the number of data bits transferred per character. Each character is always stored as a byte in the FIFO.
SetParity	Set the type of parity bit.
SetStopBits	Set the number of stop bits.
EnableLoopback	Connect RX and TX signals internally and disable external signals.
EnableErrorReporting	Send a break, i.e. hold TX line at logic low. No errors are currently reported.
EnableRxTerminationResistor	Enable RS-485 termination resistor (91 Ω) between RX+ and RX
EnableTxTerminationResistor	Enable RS-485 termination resistor (91 Ω) between TX+ and TX
SetCharDelay	Set the delay between each character in microseconds.
SetMinorFrameMode	Set how characters are grouped into minor frames (Section 4.16.1.2).
SetMinorFrameLength	Set the number of characters in a minor frame (only used for fixed length frame mode).
SetMinorFrameDelay	Set the delay between minor frames in microseconds.
SetMajorFramePeriod	Set the repeat period for a major frame in microseconds.
Cotmorrinotion	Set the termination string used to define the end of a message (max 128 characters). A READ command stops when the termination string has been found.
SetTermination	NOTE: Setting the termination string is currently only supported in low-level API. Framework support is under development.
EnableHDEchoSuppression	Stop RS-422 receiver from reading the transmitted characters.
	Enable RS-232 hardware flow control.
SetFlowControl	NOTE: Setting the watermark level is currently only supported in low-level API. Framework support is under development.

Table 4-4 High-level API for Serial Port Configuration

Refer to the CUeiSerialPort class definition and/or the "UeiDaq Framework Reference Manual" for more information about these functions and their accepted input parameters.

4.16.1.1 Configure The following example shows how to program a custom port speed. See Custom Baud Rate Table 1-6 for the maximum supported speeds.

```
//Set baud rate to 15000 bits per second.
port->SetSpeed (SerialBitsPerSecondCustom);
port->SetCustomSpeed (15000);
```

4.16.1.2 Configure The DNx-MF-102 supports three possible ways of defining a minor frame:

Minor Frames

1. Fixed Length – each minor frame is a fixed number of characters. For example:.

//Insert a 1000us delay after every 20 characters.

```
port->SetMinorFrameMode(UeiSerialMinorFrameModeFixedLength);
port->SetMinorFrameLength(20);
port->SetMinorFrameDelay(1000);
```

- Zero Character the end of a minor frame is indicated by an ASCII NUL character (0x00). The zero character is transmitted when it's the last character in a WRITE command.
- 3. Variable Length the size of each minor frame is indicated by an extra character preceding the data characters. For example, if the write buffer contains writeData={3, 0xa, 0xb, 0xc, 2, 0xd, 0xe}, the following sequence will be transmitted: 0xa, 0xb, 0xc, delay, 0xd, 0xe

4.16.1.3 Configure The DNx-MF-102 only supports hardware flow control mode. Data transmission stops when CTS is low, and RTS goes low when the RX FIFO reaches the RX watermark level.

 $//{\rm RX}$ watermark is default 512 characters. Enable hardware flow control.

port->SetFlowControl(UeiSerialFlowControlRtsCts);

If the RX FIFO overflows when RTS Autoflow is enabled, the receiver stops receiving data until a hard reset is performed.

4.16.2 Read Data Reading data from the RX FIFO is done using a reader object. The following sample code requests 10 bytes from the RX FIFO and returns the number of bytes actually read.

//Create a reader object and link it to the session's data stream.

CUeiSerialReader serialReader(serialSession.GetDataStream());

//Data buffer must be large enough to contain the number of bytes read.

char readData[10];

//Read up to 10 bytes from the RX FIFO.

serialReader.Read(10, readData, &numBytesRead);

The number of returned bytes may be less than the number of requested bytes if the RX FIFO is short on data or if the termination string has been found. The termination string can span across multiple READ commands. If one READ command returns the beginning of the termination string, the next command will watch for the remainder of the string.

4.16.3 Write Data Writing data to the TX FIFO is done using a writer object. The following example commands a write of two bytes and returns the number of bytes actually written.

//Create a writer object and link it to the session's data stream. CUeiSerialWriter serialWriter(serialSession.GetDataStream()); //Load two bytes of data into buffer. char writeData[2] = {0x53, 0x54}; //Write 0x53 and 0x54 to TX FIFO. //If numBytesWritten==2, both bytes fit into the TX FIFO. serialWriter.Write(2, writeData, &numBytesWritten);

- 4.17 CAN Bus Port The session may be configured to access the CAN subsystem. This subsystem is used to send data over a CAN bus.
- 4.17.1 Configure
 The CreateCANPort() method adds one or both CAN ports and sets basic configuration parameters.

CUeiCANPort* CreateCANPort(std::string resource, tUeiCANPortSpeed bitsPerSecond, tUeiCANFrameFormat frameFormat, tUeiCANPortMode mode, uInt32 acceptanceMask, uInt32 acceptanceCode);

- resource Resource string for adding CAN port(s) to the session.
- bitsPerSecond number of bits transmitted per second over the CAN port.
- frameFormat basic (11 bits ID) or extended (29 bits ID).
- mode normal or passive.
- acceptanceMask used to filter incoming frames. The mask selects which bits within arbitration ID will be used for filtering.
- acceptanceCode used to filter incoming frames. The arbitration ID bits selected by the mask are compared to the code and the frame is rejected if there is any difference.
 For each bit, if (((ID==code) OR mask) == 1), then the frame is accepted.

// Configure CAN ports 0 and 1 on device 0

```
CUeiCANPort* canPorts = canSession.CreateCANPort
    ("pdna://192.168.100.2/Dev0/Can0,1",
    UeiCANBitsPerSecond500K,
    UeiCANFrameExtended,
    UeiCANPortModeNormal,
    0xFFFFFFF,
    0);
```

4.17.1.1 Transmit
Frame Auto
FormatWhen the frame format is set to Extended, and the TxFrameAutoFormat
property is set to true (the default value), the frame format will be automatically
selected based on the frame ID. Frames with IDs less than or equal to 0x7ff will
use 11-bit IDs while frames with IDs greater than or equal to 0x800 will use 29-bit
IDs.

The example in Section 4.17.1 creates two CUeiCANPort instances. Each CAN port and its properties, e.g., TxFrameAutoFormat can then be configured or accessed separately as shown in the following example.

// Disable TxFrameAutoFormat for CAN port 0

((CUeiCANPort*)canSession.GetChannel(0))->EnableTransmitFrameAutoFormat(false);

4.17.1.2 CAN Frame Filtering The SJA100 provides the capabilit to filter CAN frames. The most significant bits of the acceptanceMask and acceptanceCode arguments of CreateCANPort align with the MSBs of the corresponding registers described in Section 2.5.4. There are two 8-bit registers for basic frame filtering. The 4-byte registers used in extended frame filtering should be treated as single 32-bit registers. Setting the acceptance mask to 0xFFFFFFFF and the acceptance code to 0 disables filtering.

Filtering can also be done through software. A list of filter entry pairs is used to configure the filtering. Each filter entry pair specifies the start and of a range of frame IDs that will be accepted.

```
// Add a software filter entry
```

```
tUeiCANFilterEntry entry;
entry.First = 0x100;
entry.Last = 0x200
```

((CUeiCANPort*)canSession.GetChannel(0))->AddFilterEntry(entry);

4.17.2 Read Data

Reading data from the DNx-MF-102 CAN ports is done using a reader object. As there is no multiplexing of data (contrary to what's being done with AI, DI, or CI sessions), you need to create one reader object per CAN port to be able to read from each port in the port list.

The following example code shows how to create a reader object tied to port 1 and read at most 10 frames from the CAN bus.

```
//Create a reader object and link it to the session's data stream,
//port 1.
reader = CUeiCANReader(canSession.GetDataStream(), 1);
// read up to 10 CAN frames, numFramesRead contains the
// number of frames actually read.
tUeiCANFrame frames[10];
Int32 numFramesRead;
reader->Read(10, frames, &numFramesRead);
```


4.17.3 Write Data Writing data to the DNx-MF-102 CAN ports is done using a writer object. As there is no multiplexing of data (contrary to what's being done with AO, DO, or CO sessions), you need to create one writer object per CAN port to be able to write to each port in the port list.

The following example code shows how to create a writer object tied to port 0 and send one frame to the CAN bus.

```
//Create a writer object and link it to the session's data stream,
//port 0.
writer = CUeiCANWriter(canSession.GetDataStream(), 0);
//write 1 CAN frame
tUeiCANFrame frame;
Int32 numFramesWritten;
frame.Id = 0x10290;// Set the arbitration Id
frame.IsRemote = 0;// This is not a remote frame
frame.DataSize = 1;// Only send 1 byte in the payload
frame.Data[0] = 0x23;// Initializes the 1-byte payload
writer->Write(1, &frame, &numFramesWritten);
```

4.18 Stop the
SessionThe session will automatically stop and clean itself up when the session object
goes out of scope or when it is destroyed. To manually stop the session:

```
//Stop the session.
mySession.Stop();
```

To reuse the object with a different set of channels or parameters, you can manually clean up the session as follows:

```
//clean up session and free resources
```

```
mySession.CleanUp();
```


Chapter 5 Programming with Low-level API

This chapter provides the following information about programming the DNx-MF-102 using low-level API:

- About the Low-level API (Section 5.1)
- Example Code (Section 5.2)
- Data Acquisition Modes (Section 5.3)
- Point-by-Point API (Section 5.4)
- Async Events API (Section 5.5)
- RtDMap API (Section 5.6)
- RtVMap API (Analog IO) (Section 5.7)
- RtVMap API (Serial) (Section 5.8)
- RtVMap API (CAN) (Section 5.9)
- AVMap API (Section 5.10)
- **5.1 About the Low-level API** The low-level API provides direct access to the DAQBIOS protocol structure and registers in C. The low-level API is intended for speed-optimization, when programming unconventional functionality, or when programming under Linux or real-time operating systems.

When programming in Windows OS, we recommend that you use the UeiDaq high-level Framework API (see Chapter 4). The Framework simplifies the low-level API, making programming easier and faster while still providing access to the majority of low-level API features. Additionally the Framework supports a variety of programming languages and the use of scientific software packages such as LabVIEW and MATLAB.

For additional information regarding low-level programming, refer to the *"PowerDNA API Reference Manual"* located in the following directories:

- On Linux: <*PowerDNA-x.y.z*>/docs
- On Windows: C:\Program Files (x86)\UEI\PowerDNA\Documentation
- **NOTE:** The DNx-MF-102 is supported in PowerDNA version 5.2.0.11+. If you're unsure if your version supports the board please contact Technical Support at <u>uei.support@ametek.com.</u>

The Low-level API uses macros (#defines) that are used for specifying a variety of entities such as subsystems, voltage ranges, channel lists, gain settings, etc. Macros formatted as $DQ_MF102_$ are specific to the DNx-MF-102 whereas macros formatted as $DQ_MF10x_$ apply to any UEI DNx-MF-10x multifunction board.

5.2 Example Code Application developers are encouraged to explore the self-documented source code examples to get started programming UEI products. The example code is located in the following directories:

- On Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples
- On Windows:
 C:\Program Files (x86)\UEI\PowerDNA\SDK\Examples\Visual C++

The I/O board number is embedded in the name of the example code. For example, the *Sample102* folder contains example code specific to the DNx-MF-102. The example code should run out of the box after inputting the IOM's IP address and the board's Device Number (DEVN).

5.3 Data Table 5-1 lists the data acquisition (DAQ) modes available for transferring data between the DNx-MF-102 and the low-level user application. Modes

Table 5-1 DAQ Modes Supported by the Low-Level API

DAQ Mode	Aln	AOut	DIn	DOut	TTL	СТ	Serial	CAN
Point-by-Point	•	•	•	•	•	٠	٠	•
Async			٠					•
RtDMap	•	•	٠	•	•	٠		
RtVMap	•	٠					٠	•
ADMap								
AVMap	•							
ACB								

- **Point-by-Point:** Transfers one data point at a time to/from each configured channel of a single I/O board. Timing is controlled by the user application, which limits the transfer rate to 100 Hz. Point-by-Point mode is also known as immediate mode or simple mode.
- **Async:** an event-driven mode used to acquire data on a specific event, (e.g., digital I/O pin change of state, CAN events, return periodic data at a user-defined rate). See Section 5.5.
- Real-Time Data Map (RtDMap): Transfers a packet containing one data point for each channel in the user-defined map. The newest data is transferred and old data is discarded. RtDMap is designed for closedloop (control) applications and may include channels across multiple I/O boards.
- Real-Time Variable Map (RtVMap): Transfers a packet containing a variable number of data points per channel. RtVMap buffers the data and transfers the oldest data first. RtVMap is designed for closed-loop (control) applications and may include channels across multiple I/O boards.

٠	Asynchronous Variable Map (AVMap): Transfers a packet containing
	a variable number of data points per channel. AVMap buffers the data
	and transfers the oldest data first. AVMap is designed for closed-loop
	(control) applications and may include channels across multiple I/O
	boards. With AVMap, a hardware condition, e.g., a timer countdown,
	triggers data delivery.

ACB and ADMap are currently not supported on the DNx-MF-102.

Please refer to *"FAQ - Data Acquisition Modes"* for an overview and comparison of all the different acquisition modes offered by UEI. The *"PowerDNx Protocol Manual"* includes more detailed information about the protocols. Both of these documents are located in the directories listed in Section 5.1.

- **NOTE:** Multiple subsystems (Aln, AOut, etc.) may be used together as long as they share the same DAQ mode. It is not possible to mix and match multiple DAQ modes on a single IO board, e.g., Point-by-Point serial messaging alongside VMap analog I/O.
- **5.3.1** Async Events Mode The DNx-MF-102 supports asynchronous event handling. This event-driven mode runs in a separate thread alongside the selected DAQ mode. The firmware sends an event packet when a specific event occurs. See Section 5.5 for a list of events that can be received from the DNx-MF-102.

You can call any of the DAQ mode functions upon receiving the event.

5.4 Point-by-Point API This section summarizes the low-level API used to configure, read from, and write to the DNx-MF-102 in Point-by-Point DAQ mode. The functions and parameters are described in detail in the *"PowerDNA API Reference Manual"*. Please see *Sample102* for a comprehensive example which includes typical initialization, error handling, and usage of these functions. The example splits the I/O subsystems into separate cases, making it easy to copy-paste different subsystems into a true multifunction application.

The information in this section is intended as a supplement to the example code and the API reference manual.

Note that much of the functionality provided by the DNx-MF-102 is identical to functionality provided by UEI's DNx-MF-101. Therefore, many DqAdv102_______functions are an alias to the corresponding DqAdv101______function. For example, calling DqAdv102AOReadAdc() actually invokes

DqAdv101AOReadAdc(). For CAN port support, functions may be aliased to DNx-CAN-503 functions. Throughout this section, aliased functions are noted in the following tables.

5.4.1 Analog I/O Table 5-2 lists the low-level API functions for the DNx-MF-102 analog I/O subsystem. See *Sample102AnalogIn.c* and *Sample102AnalogOut.c* for example code.

Table 5-2 Low-level Analog I/O API

	Function	Description
og ut	DqAdv102AIRead ¹	Return continuously sampled data from input channel.
Anal Inp	DqAdv102AISetConfig ¹	Enable/disable voltage divider on input channel and configure moving average.
	DqAdv102AOWrite ¹	Write either floating point or raw values to output channel.
utput	DqAdv102AOSetConfig ¹	Select voltage or current output mode and set range.
l0 bc	DqAdv102AOWriteWForm ¹	Load waveform data into output channel FIFO.
Analo	DqAdv102AOEnableWForm ¹	Enable/disable a waveform on output channel.
	DqAdv102AOReadAdc ¹	Read back voltage and temperature from diagnostic ADCs.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101_____

Table 5-3 Low-level Digital I/O API

	Function	Description
	DqAdv102DIRead ¹	Read the current and debounced states on DIO lines.
DIn	DqAdv102DIReadAdc ¹	Read voltage on DIO lines.
itrial	DqAdv102DISetDebouncer ¹	Set debouncing interval for digital inputs.
snpu	DqAdv102DISetLevels ¹	Set low and high voltage levels for digital inputs.
_	DqAdv102DISetMovingAverage ¹	Set number of samples used to calculate moving average for every digital input ADC channel.
Dut	DqAdv102DORead ¹	Read back the last state written to digital outputs.
al DC	DqAdv102DOSetPWM ¹	Configure pulse width modulation on digital outputs.
ustri	DqAdv102DOSetTermination ¹	Configure pull up/down resistors.
lnd	DqAdv102DOWrite ¹	Set digital output state to 0, 1, or turned off.
OIO	DqAdv102TTLRead	Read the status of all TTL lines.
	DqAdv102TTLWrite	Set state of TTL outputs.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101____

^{5.4.2} Digital I/O Table 5-3 lists the low-level API functions for the DNx-MF-102 digital I/O subsystems. See *Sample102DigitalIn.c*, *Sample102DigitalOut.c*, and *Sample102TTL.c* for example code.

5.4.3 Counters Table 5-4 lists the low-level API functions for the DNx-MF-102 digital counter subsystem. See *Sample102CT.c* for example code.

	Function	Description	
	DqAdv102CTSetSource	Connect digital I/O pins to CLKIN and GATE.	
	DqAdv102CTSetOutput	Connect one or more digital outputs to CLKOUT.	
	DqAdvCTStartCounter	Start counter if not using auto-start mode.	
	DqAdvCTClearCounter	Reset counter to the initial value in the load register.	
	DqAdvCTRead	Read data from a counter.	
	DqAdvCTWrite	Change CLKOUT signal by writing to CR0 and CR1.	
	DqAdvCTCfgCounter	Configure advanced counter settings.	
ú	DqAdvCTCfgForGeneralCounting	Configure counter as a general event counter or timer.	
ounter	DqAdvCTCfgForBinCounter	Configure counter to count the number of events in a specific time interval.	
Ŭ	DqAdvCTCfgForPeriodMeasurement	Configure counter to measure how long CLKIN is high and how long CLKIN is low over N periods.	
	DqAdvCTCfgForHalfPeriod	Configure counter to measure pulse width of CLKIN.	
	DqAdvCTCfgForTPPM	Configure counter to measure the average period of CLKIN over the user-defined time interval.	
	DqAdvCTCfgForQuadrature	Configure counter as a quadrature decoder; GATE pin defines direction of counting.	
	DqAdvCTCfgForPWM	Configure counter for PWM output.	
	DqAdvCTCfgForPWMTrain	Configure counter to output a set number of PWM pulses.	

Table 5-4 Low-level Counter API

5.4.3.1 Configuration Settings

Each counter can be independently configured using either

 $\label{eq:dvCTCfgCounter()} \begin{array}{l} \text{Or one of the } \text{DqAdvCTCfg}() \ \text{functions.} \\ \text{DqAdvCTCfgCounter()} \ \text{is the lowest level configuration function. However,} \\ \text{since not all parameter combinations are supported in all modes, it is easier to} \\ \text{use a } \text{DqAdvCTCfg}() \ \text{function when possible. } \text{DqAdvCTCfg}() \\ \text{automatically selects the best counting mode for the application and only} \\ \text{exposes relevant parameters. The counter configuration parameters are listed in} \\ \text{Table 5-5.} \end{array}$

Table 5-	5 Counter	Configuration	Parameters

Parameter	Description
startmode	Auto-start or start on DqAdvCTStartCounter()
sampwidth	PWM sample width
ps	Prescaler value for clock division
рс	Period count register; used when measuring multiple periods
cr0	Compare register 0, CLKOUT is low between Ir and cr0
cr1	Compare register 1, CLKOUT is high between cr0 and cr1

Parameter	Description
tbr	Timebase register; used for timed measurements
dbg	Input debouncing gate register; GATE to be stable
dbc	Input debouncing clock register; defines time for CLKIN to be
	stable
iie	Invert CLKIN pin
gie	Invert GATE pin
oie	Invert CLKOUT pin
mode	Counting mode (Section 5.4.3.2)
trs	Use GATE as trigger
enc	Auto-clear counter after end_mode and await next trigger
gated	Use GATE to enable/disable counter, if GATE is not already being
	used as a trigger
re	Restart counter after end_mode condition is met
end_mode	Count termination condition (Section 5.4.3.3)
lr	Load register; sets initial value of the counter

Table 5-5 Counter	Configuration	Parameters	(Cont.)
-------------------	---------------	------------	---------

5.4.3.2 Counting Modes

The following modes are selectable in DqAdvCTCfgCounter():

- **Basic timer** counts the number of 66 MHz clock cycles (or cycles of 66 MHz divided by the prescaler). The output stays low as the counter counts from lr up to cr0 and then stays high until it reaches cr1. The counter may be used as a Bin Counter or generate a One-Shot Output by selecting an appropriate end mode (Section 5.4.3.3).
- **External event counter** similar to the Basic Timer, except the clock source is the debounced CLKIN signal rather than the 66 MHz clock.
- **Timed Pulse Period Measurement** counts the total number of rising CLKIN edges over the tbr time interval, as well as the total number of 66 MHz clock cycles between the first and last rising edge. The average period can be computed from these two measurements.
- **Half-period capture** counts the number of 66 MHz clock cycles over which CLKIN is high. The pulse width can then be calculated.
- **N-period capture** counts the number of 66 MHz clock cycles for both the positive and negative parts of CLKIN until pc-1 number of periods have elapsed. The average period can then be calculated.
- **Quadrature Decoder** counts the number of rising CLKIN edges, counting up if GATE=1 and down if GATE=0.

All modes except the Quadrature Decoder support an optional hardware trigger.

- **5.4.3.3 End Modes** The following count termination conditions are available:
 - · Count register reaches CR0 value
 - Count register reaches CR1 value
 - Count register reaches 0xFFFFFFF
 - Period count register reaches 0

- Timebase register reaches 0
- GATE goes from high to low

5.4.4 Serial Port Table 5-6 lists the low-level API functions for the DNx-MF-102 RS-232/422/485 serial port subsystem. See *Sample102Serial.c* for example code.

Table 5-6 Low-level Serial Port API

	Function	Description
RS-232/422/485	DqAdv102SerialSetConfig ¹	Set configuration properties for the serial port.
	DqAdv102SerialClearFIF0 ¹	Clear the input and/or output FIFOs.
	DqAdv102SerialEnable ¹	Enable or disable serial port.
	DqAdv102SerialReadRxFIF0 ¹	Read data from the RX FIFO.
	DqAdv102SerialReadRxFIFOEx ¹	Read data, timestamps, and status bits from the RX FIFO.
	DqAdv102SerialWriteTxFIF0 ¹	Write data to the TX FIFO.
	DqAdv102SerialSendBreak ¹	Transmit a break of a specified duration.
	DqAdv102SerialFlowControl ¹	Configure RS-232 RTS/CTS hardware flow control.

1. This function is an alias for the equivalent MF-101 function, i.e., DqAdv101_____

5.4.4.1 Configuring The DqAdv102SerialSetConfig() function takes in port settings through the Serial Port an MF102SERIALCFG structure and populates a configuration card.

Supported MF102SERIALCFG structure members are listed in Table 5-7. Some parameters require a single value and some accept a logically grouped combination of constants. Refer to the *"PowerDNA API Reference Manual"* for a complete description of each parameter.

Parameter	Description	Flag
flags	OR in flags to change associated parameters	n/a
baud_rate	desired baud rate	DQ_MF102_SERIAL_CFG_ BAUD
mode	RS-232, 422, or 485	DQ_MF102_SERIAL_CFG_
loopback	=1 enable internal loopback	CHAN
stop_bits	number of stop bits	
parity	type of parity bit	
width	number of bits in each character	
break_en	=1 sets serial output to logical 0	
term_fs_tx_rx	=1 enables RS-485 termination resistors	
char_delay_src	delay between each character sent to FIFO	DQ_MF102_SERIAL_CFG_
char_delay_us	clock source for char_delay_us	CHAR_DELAY
frame_delay_mode	defines minor frame for frame_delay_us	DQ_MF102_SERIAL_CFG_
frame_delay_length	number of characters in minor frame; only for FIXEDLEN delay mode	FRAME_DELAY
frame_delay_src	clock source for frame_delay_us	
frame_delay_us	delay between minor frames	
frame_delay_repeat_us	repeat time between major frames	
term_buf	termination string	DQ_MF102_SERIAL_CFG_
term_length	length of term_buf to use	TERM_STRING
timeout	number of clocks without receiving data before timeout	DQ_MF102_SERIAL_CFG_ TIMEOUT
timeout_clock	units for timeout	
tx_watermark	reserved	DQ_MF102_SERIAL_CFG_ TX_WM
rx_watermark	RX FIFO watermark for data flow control	DQ_MF102_SERIAL_CFG_ RX_WM
suppress_hd_echo	=1 suppresses echo in RS-422 mode	DQ_MF102_SERIAL_CFG_
add_ts_on_idle	=1 adds timestamp to RX FIFO during idle state	EXT

Table 5-7 Serial Port Configuration Parameters

Note that <flags> defines what other parts of the configuration structure are valid. For example, the DQ_MF102_SERIAL_CFG_CHAN flag is required to switch the mode. If DQ_MF102_SERIAL_CFG_CHAN is not included in <flags>, then the parameter values associated with the flag are ignored and remain unchanged.

By using this strategy, configuration calls can be additive, so each following call adds or changes a parameter to the configuration card. Any untouched parameters are enabled with default values. To reset the entire configuration back to the default state, call DqAdv102SerialSetConfig() with only the DQ_MF102_SERIAL_CFG_CLEAR bit set in <flags>.

The settings on the configuration card take effect when DqAdv102SerialEnable() is called.

5.4.5 CAN Ports Table 5-8 lists the low-level API functions for accessing the DNx-MF-102 CAN port subsystem. See *Sample102CAN.c* for example code.

	Function	Description
	DqAdv102CANSetMode ¹	Set the communication mode for a CAN port
	DqAdv102CANSetChannelCfg ¹	Set the communication options for a CAN port
	DqAdv102CANEnable ¹	Enables or disables both CAN ports on the MF-102
	DqAdv102CANEnableChannel	Enables or disables a single CAN channel (port)
	DqAdv102CANSendMessage ¹	Sends a message from an MF-102 CAN port to the CAN network
	DqAdv102CANRecvMessage	Gets a message received on an MF-102 CAN port on a CAN network
N Bus	DqAdv102CANParseMsg	Converts CAN messsage to separate frame ID and message
CAN	DqAdv102CANMakeVmapMsg ¹	Converts CAN message for use in 16-byte per message VMap mode
	DqAdv102CANGetStatus ¹	Returns error counts and status information from the CAN controller for each CAN port
	DqAdv102CANParseStatus	Converts CAN status data into individual register components
	DqAdv102CANSetFilter ¹	Sets filter pairs for a CAN port. Filtering is by message ID.
	DqAdv102CANSetWatermark ¹	Configure TX and RX FIFO watermarks
	DqAdv102CANResetChannel ¹	Reset SJA-1000 chip for the specified channel

Table 5-8 Low-level CAN Port API

1. This function is an alias for the equivalent CAN-503 function, i.e., DqAdv503____

5.4.5.1 Configuring DNx-MF-102 CAN ports can be configured using the following Low-level API the CAN Ports functions:

- DqAdv102CANSetChannelCfg
- DqAdv102CANSetMode
- DqAdv102CANSetFilter
- DqAdv102CANEnable

Refer to the "PowerDNA API Reference Manual" for a complete description of the functions and their parameters.

The DqAdv102CANSetChannelCfg() function allows configuration of settings listed in Table 5-9 for the specified port. In addition to the port number, the function takes a bitwise OR of the flags listed in the table.

Table 5-9 Configuration Parameters set by DqAdv102CANSetChannelCfg

Flag	Values	Description
DQ_CAN102_RATE_xx	DQ_MF102_CAN_RATE_50K	Data rate for the CAN port
	DQ_MF102_CAN_RATE_100K	
	DQ_MF102_CAN_RATE_125K	
	DQ_MF102_CAN_RATE_250K	
	DQ_MF102_CAN_RATE_500K	
	DQ_MF102_CAN_RATE_800K	
	DQ_MF102_CAN_RATE_1M	
DQ_CAN102_OPER_xx	DQ_MF102_CAN_OPER_NORMAL	normal (active)
	DQ_MF102_CAN_OPER_LISTEN	passive listen only (only in extended
		mode)
DQ_CAN102_MODE_xx	DQ_MF102_MODE_BASIC	basic CAN (CAN2.0A) 11 bit ID
	DQ_MF102_MODE_XTEND	extended (CAN2.0B) 29 or 11 bit ID
DQ_CAN102_ID_xx	DQ_MF102_CAN_ID_AUTO	default case, CAN2.0B use 11-bit IDs on
		IDs <= 0x7ff, 29-bit for IDs >= 0x800 when
		transmitting frames.
	DQ_MF102_CAN_ID_29BITS	
		CAN2.0B use 29-bit IDs

The DqAdv102CANSetMode() function can be used to configure the SJA1000 CAN controller to filter CAN frames. When its cmd argument is set to DQ_MF102_CAN_SET_MASK, DqAdv102CANSetMode() takes a pointer to an 8-byte buffer that contains a 4-byte accept code followed by a 4-byte accept mask. See the code snippet below and Section 2.5.4 for more information on filtering CAN frames.

Filtering of CAN frames can also be done through software. DqAdv102CANSetFilter() accepts a list of filter pairs. Each pair specifies the start and end of a range of IDs that will be accepted.

Use DqAdv102CANEnable() to enable both DNx-MF-102 CAN ports. Use DqAdv102CANEnableChannel() to enable to enable a single CAN port.

The following is an example sequence of using the functions listed above for configuring the CAN ports.

DqAdv102CANEnable(hd, devn, TRUE);

5.4.5.2 CAN Port Status The function DqAdv102CANGetStatus() provides CAN port status information. When using the RtVMap DAQ mode, DqAdv102CANParseStatus() can be used. See the RtVMap example program in Section 5.9. Refer to the *"PowerDNA API Reference Manual"* for a complete description of the functions and their parameters.

DqAdv102CANGetStatus () provides status information for both CAN ports as well as additional information for the CAN subsystem. The status information is returned in a buffer containing four uint32 words for CAN port 0 followed by four uint32 words for CAN port 1. An additional two uint32 words complete the status information. The status words for each CAN port and the two board-wide status words are listed in Table 5-10.

Table 5-10 SJA1000 Status Word	s Returned by I	DqAdv102CANGetStatus
--------------------------------	-----------------	----------------------

Status Word	Bits	Description
atatus word 0	2316	SJA1000_MCR - mode and control register
(port n)	158	SJA1000_IR - interrupt register
(port ii)	70	SJA1000_SR - status register
	3124	SJA1000_PC_RECR RX - error count register
status word 1	2316	SJA1000_PC_TECR TX - error count register
(port n)	158	SJA1000_PC_ECCR - error code capture register
	70	SJA1000_PC_ALCR - arbitration lost count register
status word 2 (port n)		RX FIFO level for the channel
status word 3 (port n)		TX FIFO level for the channel
		CAN status logic register - board-wide; appears after per port
		data
DQL_CLI_ISR		ISR register - board-wide; appears after per port data

5.5 Async Events API Most asynchronous event-handling functions are board-agnostic and described in the *"PowerDNA API Reference Manual"*. There are two functions specific to the DNx-MF-102. These are listed in Table 5-11.

Please see *SampleAsync102DI_EdgeDetection* for examples of configuring the DNx-MF-102 to detect change of state on industrial digital input channels and configuring the DNx-MF-102 to receive a periodic event.

Please see *SampleAsync102CAN* for an example of how to configure the DNx-MF-102 to receive CAN port events including receiving data periodically, reaching the FIFIO watermark, and bus errors or warnings.

	Function	Description
		Configure the board to send status data upon one of the following CAN events:
		 Return CAN data periodically at a user-defined rate
		 input FIFO above watermark (data included)
		output FIFO below watermark
	DqAdv102ConfigEvents	bus or protocol errors
		 bus warning level has been reached
рс		bus in passive state
Asy		CAN contoller is taken off the bus
		RX FIFO overflow
		unexpected RX error
		unexpected TX error
		Additionally, data can be sent upon the following events:
		DIO pin changes state
		Periodically at a user-defined rate
	DqAdv102ConvertEvent	Convert MF-102 event data from IOM device endian format to host endian format

Table 5-11 Low-level Asynchronous Events API

5.6 RtDMap API Real Time Data Map (RtDMap) mode uses the same API as Point-by-Point mode for channel configuration (Section 5.4); however, generic DMap functions are used for reading data. The DMap API is documented in the *"PowerDNA API Reference Manual"*.

Refer to *SampleRTDMap102* for an example of how to set up a Data Map on the DNx-MF-102. Table 5-12 lists the DNx-MF-102 channels that can be added to the DMap.

Subsystem	Channels	Notes
DQ_SS0IN	DQ_LNCL_TIMESTAMP	Read timestamp.
	015 for single-ended channels	Read analog inputs;
DQ_MF10X_SS_AI	07 for differential channels	See DqAdv102AIRead() for channel gain configuration details.
DQ_MF10X_SS_AO	01	Write to analog outputs.
	DQ_MF102_DMAP_DI_STATE	Read FET-based DIO port (16 bits).
DQ MF10X SS DI	DQ_MF102_DMAP_DI_DEB	Read debounced FET-based DIO port.
~	DQ_MF102_DMAP_DI_TTL	Read TTL DIO port; Bits 0:1 are TTL0:1
DO MELON CO DO	DQ_MF102_DMAP_DO_FET	Set state of FET-based digital outputs.
DQ_MFIOX_SS_DO	DQ_MF102_DMAP_DO_TTL	Set state of TTL digital outputs.
DO ME102 SS OT	DQ_MF102_DMAP_DI_CT_0	Read counter 0; See Section 5.4.3 and <i>Sample102CT.c</i> for configuration details.
DQ_MF102_55_C1	DQ_MF102_DMAP_DI_CT_1	Read counter 1; See Section 5.4.3 and <i>Sample102CT.c</i> for configuration details.
DQ_MF10X_SS_GUARDIAN DQ_MF102_DMAP_GUARD_DI_ ADC_CHAN		Read voltage on FET-based DIO; OR in the desired channel number (015).

Table 5-12 DMap Channels

A basic overview of DMap usage is provided in Section 5.6.1. More information on RtDMap is available in the *"PowerDNx Protocol Manual"*.

DMap Configuration:

- 1. Create a DMap.
- 2. Configure DNx-MF-102 scan rate.
- **3.** Configure input/output channels.
- **4.** Add input/output channels to the DMap.
- **5.** Start the DMap.

DMap Operation:

6. Schedule output data to write upon next refresh.

^{5.6.1} DMap Tutorial This tutorial will focus on analog I/O; additional subsystems are covered in the example code. As shown in *SampleRtDMap102*, a DMap program is structured as follows:

7. Refresh the DMap.

8. Read retrieved data from input channels (returned in reply to refresh). **Close Out DMap:**

- **9.** Stop and close the DMap.
- 5.6.1.1 DMap Configuration
 1. To create a new DMap, call DqRtDmapInit(). One copy of the DMap is stored on the IOM and another is stored on the host. During operation (Step 8), the IOM will update its version of the map at the rate specified during initialization.

//Create and initialize a DMap with a 100 Hz refresh rate.

```
DqRtDmapInit(hd, &dmapid, 100);
```

 By default, all boards in the DMap are clocked at the DMap refresh rate (set in Step 1). You can override this setting and specify a different sampling rate for the DNx-MF-102:

//Set the device scan rate to 100 Hz.

```
DqRtDmapSetSamplingRate(hd, dmapid, DEVN, 100);
```

 Configure I/O channels using the Point-by-Point API. This tutorial will focus on analog I/O; additional subsystems are covered in the example code.

//Optionally configure moving average

DqAdv102AISetConfig(hd, DEVN, 0, DQ_MF10X_AI_MAV_1);

```
//Configure 16 single-ended input channels.
//Set up an input channel list.
```

```
for(ch=0; ch<16; ch++) {
    input_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF102_AI_GAIN_1);</pre>
```

//Configure 2 analog output channels for range $\pm 5 \text{V}.$ //Set up an output channel list.

```
for(ch=0; ch<2; ch++) {
    DqAdv102AOSetConfig(hd, DEVN, ch, DQ_MF10X_AO_RANGE_PN_5V);
    output_cl[ch] = ch;
}</pre>
```

4. Add the channels to the DMap with their corresponding subsystem names (Table 5-12).

```
//Add analog input channels to the DMap.
DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF10X_SS_AI, &input_cl, 16);
//Add analog output channels to the DMap.
DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF10X_SS_AO, &output_cl, 2);
```


}

5. Start the DMap with the configuration and channels requested above.

```
//Start the DMap.
```

DqRtDmapStart(hd, dmapid);

5.6.1.2 DMap
 Operation
 6. DqRtDmapWriteRawData() or DqRtDmapWriteScaledData() writes output channel values to the host map. The DMap can hold one data point per channel. However, data is not actually transferred to the IOM until the DqRtDmapRefresh() call in Step 7.

```
//Copy AO data to output packet (-2.5V to AOut0 and +7.5V to AOut1).
```

```
double fdata[2] = {-2.5, 7.5};
DqRtDmapWriteScaledData(hd, dmapid, DEVN, fdata, 2);
```

7. Calling DqRtDmapRefresh() sends the output data from the host to the IOM. On the reply, the IOM transfers one data point per configured input channel to the host.

//Send output data and receive input data.

DqRtDmapRefresh(hd, dmapid);

 Input data can be read from the host's version of the map using DqRtDmapReadRawData() or DqRtDmapReadScaledData().

//Read analog input voltage from DMap.

```
DqRtDmapReadScaledData(hd, dmapid, DEVN, fdata, 16);
```

5.6.1.3 Close Out 9. Stop and clean up the DMap with the calls: DMap

DqRtDmapStop(hd, dmapid);

DqRtDmapClose(hd, dmapid);

5.7 RtVMap API (Analog IO) VMap uses the same API as Point-by-Point mode for channel configuration (Section 5.4); however, generic VMap functions are used for reading data. The VMap API is documented in the *"PowerDNA API Reference Manual"*.

Refer to SampleVMap102AI_AO for an example of how to set up and run a Variable Map (VMap) for analog input and output on the DNx-MF-102. Table 5-13 lists all of the DNx-MF-102 channels that can be added to the VMap.

Table 5-13 VMap Channels

Subsystem	Channels	Notes
	015 for single-ended channels	Read analog inputs with timestamping;
DQ_MF10X_SS_AI	07 for differential channels	See DqAdv102AIRead() for channel gain configuration details.
DQ_MF10X_SS_AO	01	Write to analog outputs.

A basic overview of VMap usage is provided in Section 5.7.1. More detailed information on RtVMap can be found in the *"PowerDNx Protocol Manual"*.

5.7.1 VMap Tutorial As shown in *SampleVMap102AI_AO*, a VMap program is structured as follows: VMap Configuration:

- **1.** Create a VMap.
- **2.** Configure input/output channels.
- 3. Add input/output channels to the VMap.
- **4.** Configure DNx-MF-102 scan rates.
- 5. Set the channel list
- 6. Start the VMap.

VMap Operation:

- 7. Schedule output data to write upon next refresh.
- 8. Schedule input data to read upon next refresh.
- 9. Refresh the VMap.

10.Read retrieved data from input channels (returned in reply to refresh).

Close Out VMap:

11.Stop and close the VMap.

 5.7.1.1 VMap Configuration
 1. To create a new VMap, call DqRtVmapInit(). One copy of the VMap is stored on the IOM and another is stored on the host. During operation (Step 9), the IOM will update its version of the map at the rate specified during initialization.

//Create and initialize a VMap with a 1000 Hz refresh rate.

```
DqRtVmapInit(hd, &vmapid, 1000);
```


Configure analog I/O channels and set a VMap flag for each channel (required in Step 3).

```
//Configure 16 single-ended input channels for range +-10V.
//Set up flag array for retrieving FIFO state.
for(ch=0; ch<16; ch++) {
    in_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF10X_AI_GAIN_1);
    in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}
// Optionally configure voltage divider and moving averages
DqAdv102AISetConfig(hd, DEVN, AI_DIVIDER_MASK, AI_MOVING_AVERAGES);
//Configure 2 analog output channels for range +-5V.
//Set up flag array for retrieving FIFO state.
for(ch=0; ch<2; ch++) {
    DqAdv102AOSetConfig(hd, DEVN, ch, DQ_MF10X_AO_RANGE_PN_5V);
    out_cl[ch] = ch;
}
```

3. Add the channels to the VMap with their corresponding subsystem names (Table 5-13).

4. The DNx-MF-102 board is clocked according to the rates set by DqRtVmapSetScanRate(). Since there are 16 configured channels plus 1 automatically added timestamp channel, the board's Input FIFO fills at IN_SCANRATE*17. OUT_SCANRATE defines the overall rate at which the board's Output FIFO empties; you can fill the FIFO with a chunk of Channel 0 data followed by a chunk of Channel 1 data, or the two channels can be interleaved.

//Set the device scan rate.

DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF10X_SS_AI, IN_SCANRATE); DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF10X_SS_AO, OUT_SCANRATE);

5. The DqRtVmapSetChannelList() function identifies the number of physical channels on the DNx-MF-102.

//Specify number of physical channels per subsystem.

DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ_MF10X_SS_AI, in_cl, 16); DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ MF10X SS AO, out cl, 2);

6. Start the VMap with the configuration and channels requested above.

```
//Start the VMap.
```

```
DqRtVmapStart(hd, vmapid);
```


 5.7.1.2 VMap Operation
 7. DqRtVmapAddOutputData() writes raw Analog Output values to the host's version of the map. If passing raw data directly into DqRtVmapAddOutputData(), you must logical OR the raw data with DQ_MF10X_CLO_AO_CHAN(ch), where ch is the channel number. DqAdvScaleToRawValue() does this operation automatically. The DqNtohl() helper function can be used to convert data to host endian format. This conversion is not handled automatically because VMap packets can contain data from many different types of IO boards.

```
//Prepare to send 100 data points per output channel.
for (i=0; i<100; i++) {
   for (ch=0; ch<2; ch++) {
      DqAdvScaletoRawValue(hd, DEVN, out_cl[ch], out_fdata[i*2+ch],
            &out_bdata[i*2+ch]);
        out_bdata[i*2+ch] = DqHtonl(hd, out_bdata[i*2+ch]);
      }
//Copy data to the output packet.
//(the AO subsystem was added after AI, so its VMap index = 1)</pre>
```

Note that data is not actually transferred to the IOM until the DqRtVmapRefresh() call in Step 8.

8. Use DqRtVmapRqInputDataSz() to schedule a request for data from the IOM. You can request a variable number of data points per channel. Note that data is not actually received until the DqRtVmapRefresh() call in Step 8.

//Request 1000 data points per input channel, including timestamp.
//(the AI subsystem was configured first, so its VMap index = 0)

```
DqRtVmapRqInputDataSz(hd, vmapid, 0, 17000*sizeof(uint32),
&in_act_size, NULL);
```

- **9.** The VMap request has been prepared, so the command can be sent with DqRtVmapRefresh(). During the refresh,
- The host transfers Analog Output data to the board's Output FIFO in an Ethernet packet.
- Analog Input data is transferred from the board's Input FIFO to the host in one Ethernet packet.

//Send output data and receive input data.
DqRtVmapRefresh(hd, vmapid, 0);

If a FIFO overflow error occurs, try reducing IN_SCANRATE, increasing OUT_SCANRATE, or increasing the DqRtVmapRefresh() rate.

10.Input data can be read from the host's version of the map using DqRtVmapGetInputData(). Data will need to be converted to host endian format using the DqNtohl() function.

```
//Read analog input and timestamp data from VMap.
//(the AI subsystem was configured first, so its VMap index = 0)
DqRtVmapGetInputData(hd, vmapid, 0, 17000* sizeof(uint32),
    &in_data_size, &in_avl_size, (uint8*)in_bdata)
//Reverse byte order from Network to Host representation.
for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {
    recv_data = DqNtohl(hd, in_bdata[i]);
}
```

5.7.1.3 Close Out 11.Stop and clean up the VMap with the calls: VMap

DqRtVmapStop(hd, vmapid); DqRtVmapClose(hd, vmapid);

5.8 RtVMap API (Serial) VMap uses the same API as Point-by-Point mode for channel configuration (Section 5.4); however, generic VMap functions are used for reading data. The VMap API is documented in the *"PowerDNA API Reference Manual"*.

Refer to *SampleVMap102Serial* for an example of how to set up and run a Variable Map (VMap) for serial communication on the DNx-MF-102. Table 5-14 lists the DNx-MF-102 channels that can be added to the VMap.

Table 5-14 VMap Subsystems and Channels for Serial Communication

Subsystem	Channels	Notes
DQ_MF102_ VMAP_SS_CHAN_IN	DQ_MF102_VMAP_CHAN_SERIAL	Read serial input data.
DQ_MF102_ VMAP_SS_CHAN_OUT	DQ_MF102_VMAP_CHAN_SERIAL	Write serial output data.

A basic overview of VMap usage for serial communication is provided in Section 5.8.1. More detailed information on RtVMap can be found in the *"PowerDNx Protocol Manual"*.

5.8.1 VMap Tutorial As shown in *Sample VMap102Serial*, a VMap program for serial communication is structured as follows:

VMap Configuration:

- 1. Prepare configuration and set up channel list.
- 2. Create a VMap.
- **3.** Add input/output channels to the VMap.
- 4. Start the VMap.

VMap Operation:

- 5. Prepare to write and read data upon next refresh.
- 6. Refresh the VMap.
- 7. Read input data from host's version of the VMap.

Close Out VMap:

8. Stop and close the VMap.

5.8.1.1 VMap Configuration 1. Prepare for serial communication by setting configuration properties, enabling the serial port, and setting up the channel list and flags.

```
//Set the configuration properties and enable the serial port.
//Note that SetSerialConfiguration() calls DqAdv102SerialSetConfig()
//and DqAdv102SerialEnable()
```

```
SetSerialConfiguration(hd, DEVN);
```

// Set up the channel list and flags

```
cl_in[0] = DQ_MF102_VMAP_CHAN_SERIAL;
cl_out[0] = DQ_MF102_VMAP_CHAN_SERIAL;
flags_in[0] = DQ_VMAP_FIF0_STATUS;
flags_out[0] = DQ_VMAP_FIF0_STATUS;
```


2. Create a new VMap, by calling DqRtVmapInit(). One copy of the VMap is stored on the IOM and another is stored on the host. The refresh rate parameter is ignored for serial communication.

```
//Create and initialize a VMap
DqRtVmapInit(hd, &vmapid, 0);
```

3. Add the channels to the VMap with their corresponding subsystem names (Table 5-13), channel lists, and flags.

4. Start the VMap with the configuration and channels requested above.

//Start the VMap.

DqRtVmapStart(hd, vmapid);

5.8.1.2VMapExecute the following steps in the VMap Operation section until there is a
terminating condition.

5. Prepare to write and read serial data at the next refresh of the VMap.

//Prepare output data.

len = sprintf((char*)(&out_data[0]), "output string example");

// Write bytes to be sent at next refresh

DqRtVmapWriteOutput(hd, vmapid, DEVN, cl out[0], len, out data);

// Request the max number of bytes to receive at next refresh

DqRtVmapRequestInput(hd, vmapid, DEVN, cl_in[0], MAX_RX_MESSAGES);

6. Refresh the VMap.

// Write output data to each TX port FIFO and Read each RX port FIFO
DqRtVmapRefresh(hd, vmapid, 0);

Read input data from the host's version of the map using DgRtVmapReadInput().

5.8.1.3 Close Out 8. Stop and clean up the VMap with the calls: VMap

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

5.9 RtVMap API (CAN) VMap uses the same API as Point-by-Point mode for channel configuration (Section 5.4). However, generic VMap functions are used for reading data. The VMap API is documented in the *"PowerDNA API Reference Manual"*.

Refer to *SampleVMap102CAN* for an example of how to set up and run a Variable Map (VMap) for CAN port communication on the DNx-MF-102. Table 5-15 lists the DNx-MF-102 channels that can be added to the VMap.

Table 5-15 VMap Subsystems and Channels for CAN Communication

Subsystem	Channels	Notes
DQ_MF102_VMAP_SS_CHAN_IN	DQ_MF102_VMAP_CHAN_CAN_0 DQ_MF102_VMAP_CHAN_CAN_1	Receive CAN data.
DQ_MF102_VMAP_SS_CHAN_OUT	DQ_MF102_VMAP_CHAN_CAN_0 DQ_MF102_VMAP_CHAN_CAN_1	Transmit CAN data.

A basic overview of VMap usage for CAN communication is provided in Section 5.9.1. More detailed information on RtVMap can be found in the *"PowerDNx Protocol Manual"*.

5.9.1 VMap Tutorial As shown in *SampleVMap102CAN*, a VMap program for CAN communication is structured as follows:

VMap Configuration:

- 1. Prepare configuration and accept filter mask and code.
- 2. Build channel lists.
- 3. Enable CAN ports.
- 4. Create a VMap.
- 5. Add transmit and receive channels to the VMap.
- 6. Start the VMap.

VMap Operation:

- 7. Prepare to write and read data upon next refresh.
- 8. Refresh the VMap.
- 9. Read input data from host's version of the VMap.

Close Out VMap:

10.Stop and close the VMap.

5.9.1.1 VMap Configuration 1. Prepare for CAN communication by setting configuration parameters and the accept filter mask and code. Do this for each CAN port that will be used by your application.

```
//Set the configuration parameters.
//Note that in SampleVMap102CAN, DqAdv102CANSetChannelCfg() and
//DqAdv102CANSetMode() are called by SetCANConfiguration().
DqAdv102CANSetChannelCfg(hd, DEVN, chan,
```

```
DQ_MF102_CAN_RATE_250K | DQ_MF102_CAN_MODE_XTEND |
DQ_MF102_CAN_OPER_NORMAL | DQ_MF102_CAN_ID_29BITS);
```

```
//Set accept code and filter mask.
//The following allows all messages through.
```

```
code = 0x00000000;
mask = 0xFFFFFFF;
modeparams[0] = DqHtonl(hd, code);
modeparams[1] = DqHtonl(hd, mask);
```

DqAdv102CANSetMode(hd, DEVN, chan, DQ MF102 CAN SET MASK, modeparams);

2. Build transmit and receive channel lists.

```
//Build transmit and receive channel lists. Use the
//DQ_MF102_VMAP_CHAN_CAN(chan) macro to specify the CAN port
//For example:
```

```
cl_transmit[i] = DQ_MF102_VMAP_CHAN_CAN(TRANSMIT_CHANNEL_LIST[i]);
cl_receive[i] = DQ_MF102_VMAP_CHAN_CAN(RECEIVE_CHANNEL_LIST[i]);
```

//OR status bit to receive status data.

```
cl receive[i] |= DQ MF102 VMAP CHAN CAN STAT;
```

//return "remainder" from the FIFO after read/write is completed.

flags[i] = DQ_VMAP_FIFO_STATUS;

3. Enable both channels. To enable or disable one channel at a time use DgAdv102CANEnableChannel().

//Enable CAN ports.

DqAdv102CANEnable(hd, DEVN, TRUE);

4. Create a new VMap, by calling DqRtVmapInit(). One copy of the VMap is stored on the IOM and another is stored on the host. The refresh rate parameter is ignored for CAN communication.

```
//Create and initialize a VMap.
DqRtVmapInit(hd, &vmapid, 0);
```


5. Add the channels to the VMap with their corresponding subsystem names (Table 5-13), channel lists, and flags.

6. Start the VMap with the configuration and channels requested above.

//Start the VMap.

DqRtVmapStart(hd, vmapid);

5.9.1.2 VMap Execute the following steps in the VMap Operation section until there is a terminating condition.

7. Prepare to write and read CAN data at the next refresh of the VMap.

//Prepare output data, e.g., id of 0x580, payload of "12345678". //Output data is not transmitted until DqRtVmapRefresh call.

uint8 msg_buf0[8] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38 }; message_len = DqAdv102CANMakeVmapMsg(MODE, 0x580, msg_buf,

8, (uint8*)temp);

memcpy(out_data, temp, message_len);

// Write message to be sent at next refresh.
// Perform this step for each transmit channel.

// Request the max number of bytes to receive at next refresh.
// Perform this step for each receive channel

DqRtVmapRequestInput(hd, vmapid, DEVN, cl_receive[i], MAX_RX_MESSAGES);

8. Refresh the VMap.

// Write output data to each TX port FIFO and Read each RX port FIFO.

DqRtVmapRefresh(hd, vmapid, 0);

Read input data from the host's version of the map using DqRtVmapReadInput(). Refer to SampleVMap102CAN for additional details on the parsing of the received data.

5.9.1.3 Close Out 10.Stop and clean up the VMap with the calls: VMap

```
DqAdv102CANEnable(hd, DEVN, FALSE);
```

DqRtVmapStop(hd, vmapid);

```
DqRtVmapClose(hd, vmapid);
```


5.10 AVMap API Asynchronous Variable Map (AVMap) uses the same API as Point-by-Point mode for channel configuration (Section 5.4). However, generic AVMap functions are used for reading data.

Refer to *SampleAVMap102* for an example of how to set up and run an AVMap on the DNx-MF-102. The example program also provides more detail on declaring and initializing the variables used in the following tutorial. Table 5-16 lists the DNx-MF-102 channels that can be added to the AVMap.

Table 5-16 AVMap Channels

Subsystem	Channels	Notes
DQ_MF10X_SS_AI (DQ_SS0IN)	ch DQ_LNCL_GAIN (DQ_MF10X_AIGAIN_1)	Channel ORed with the gain bits (bits 8-11) For differential channels, OR in DQ_LNCL_DIFF

5.10.1 AVMap
TutorialThis section provides a basic overview of AVMap usage. As shown in
SampleAVMap102, an AVMap program is structured as follows:

AVMap Configuration:

- 1. Create a VMap.
- 2. Configure input channels, voltage divider, and moving averages.
- 3. Add input channels to the VMap.
- 4. Set the channel list and scan rates.
- 5. Start the VMap.

AVMap Operation:

- 6. Schedule input data to read upon next refresh.
- 7. Refresh the VMap and get data

Close Out AVMap:

8. Stop and close the VMap.

5.10.1.1 AVMap

1. To create a new AVMap, call DqRtVmapInit().

Configuration

//Create the VMap

DqRtVmapInit(hd, &vmapid, XMAPRATE);

2. Configure input channels and optionally configure voltage divider and moving averages.

```
//Configure input channels
for (ch = 0; ch < AI_CHANNELS; ch++) {
    //Build AI channel list. For differential bitwise OR in DQ_LNCL_DIFF.
    in_cl[ch] = ch | DQ_LNCL_GAIN(AI_GAIN) /* | DQ_LNCL_DIFF */;
    in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}
//Optionally configure voltage divider and moving averages</pre>
```

DqAdv102AISetConfig(hd, DEVN, AI DIVIDER MASK, AI MOVING AVERAGES);

3. Add the channels to the VMap with their corresponding subsystem names (Table 5-16).

//Add channels to the VMap

4. Set the channel list and scan rate.

5. Start the AVMap.

//Start the AVMap. Only now the transfer list is transmitted to the IOM
DqRtAXMapStart(hd, vmapid, XMAPMODE, XMAPRATE, XMAPWMRK, 0);

5.10.1.2 AVMap
Operation6. Setup to read data out of the VMAP. Note that data is not actually
transferred to the IOM until the DqRtVmapRefresh() call.

7. Loop through the remaining steps in AVMap Operation.

```
//Refresh Inputs
//Note that DqRtAVmapRefreshInputsExt() can return DQ WAIT ENDED, indicating
//that no packet was sent from the IOM to the host within the timeout.
DqRtAVmapRefreshInputsExt(hd, vmapid, &pkttype, &counter, &wm_timestamp, NULL)
// Get data from the last DqRtVmapRefresh call
DqRtVmapGetInputData(hd, vmapid, 0, rq size, &in data size,
     &in avl size, (uint8*)in bdata);
// Iterate through each received sample of each scan
scans rcvd = scans rcvd + ((in data size / (int)sizeof(uint32)) /
                                                   num input channels);
for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {</pre>
    // Extract single sample from buffer,
    //convert data to host endian order
    recv_data = DqNtohl(hd, in_bdata[i]);
    // Check if this is a timestamp
    if (recv data & DQ MF10X CLI TIMESTAMP) {
        timestamp = (double)((recv data & 0x7fffffff) * (1.0 /
                     ((BUS FREQUENCY) / (DQ LN 10us TIMESTAMP + 1))));
        fprintf(fo, "%.6f\n", timestamp);
    } else {
        // Verify data is from analog input subsystem
        recv ss = DQ MF10X CLI SS(recv data);
        switch (recv ss) {
        case DQ_MF10X_CLI_SS_AIN:
            // Extract channel and data from sample
            recv ch = DQ MF10X CLI AI CHAN(recv data);
            recv data = DQ_MF10X_CLI_AI_DATA(recv_data);
            // Convert to scaled value and write to file
            DqAdvRawToScaleValue(hd, DEVN,
                              in cl[recv ch], recv data,
                              &in fdata);
            fprintf(fo, "%.6f,", in fdata);
            break;
        default:
            break;
        }
    }
}
```

5.10.1.3 Close Out AVMap

8. Stop and clean up the AVMap with the calls:

```
DqRtAXMapEnable(hd, FALSE);
DqRtVmapStop(hd, vmapid);
DqRtVmapClose(hd, vmapid);
```


Appendix A Accessories

A.1 General Purpose STP Board and Cable The DNx-MF-102 is compatible with UEI's general purpose 62-pin cable and screw terminal board. This may be an attractive alternative when space is at a premium and/or your application is not switching high frequency and/or high power digital signals.

DNA-CBL-62

The DNA-CBL-62 is a 62-way round, heavy shielded cable with 62-pin male D-sub connectors on both ends. It is 2.5 ft (75 cm) long and weighs 9.49 ounces (269 grams).

The cable is also available in the following lengths:

•	10 ft (3.05 m)	P/N DNA-CBL-62-10

• 20 ft (6.10 m) P/N DNA-CBL-62-20

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks (JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of the STP-62 board are 4 w x 3.8 d x1.2 h inch ($10.2 \times 9.7 \times 3 \text{ cm}$) with standoffs. The weight of the STP-62 board is 3.89 ounces (110 grams).

Figure A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

A.2 Test Adapter The DNx-TADP-102 facilitates testing of DNx-MF-102 hardware and software independent of field wiring. The test adapter plugs into the DB-62 connector on the DNx-MF-102 and internally loops back analog inputs to outputs, industrial digital inputs to outputs, TTL inputs to outputs, CAN0 to CAN1, and serial receiver to transmitter.

